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0.1. Tema escollit i factors que han motivat la seva eleccio

El present treball, tal com el seu titol indica, consisteix en un estudi de la quarta dimensié.
El concepte de dimensions superiors resulta ésser notoriament complex de comprendre,
motiu pel qual dedico integrament el primer capitol del treball a explicar-lo ampliament.

Pel que fa als factors que han motivat I'elecci6 del tema, aquests sén diversos i alguns
d’ells poc concrets. En primer lloc cal apuntar la curiositat que em desperta la possibilitat
d’estudiar una cosa tan abstracta com una dimensié diferent a les 3 que ja coneixem. Em
va semblar un tema poc explorat en els treballs de recerca fets fins ara i que mereixia un
estudi, encara que no pogués ser massa profund. El meu interés també es va incrementar
de manera substancial en llegir un dels llibres que han resultat ser de major importancia a
'hora de crear el treball i que és Planilandia. La gran quantitat d'idees que em va
proporcionar em va fer decidir definitivament pel tema de la quarta dimensio.

0.2. Objectius persegquits pel treball

El tema de la quarta dimensié és extremadament ampli i pot ser tractat des de diferents
perspectives. Podem resumir en una série de punts els objectius que perseguim amb la
realitzacié d’aquest treball:

— Introduir el concepte de dimensio i estudiar qué significa parlar de “dimensions
superiors”.

— Estudiar les técniques que podem emprar per estudiar espais i figures de
dimensions superiors. Explorar I'is del raonament per analogia i emprar-lo per a
deduir propietats basiques de I'espai 4D.

— Estudiar extensament les caracteristiques de dues de les figures més basiques
de quatre dimensions: I'analoga del cub (hipercub) i la de l'esfera (hiperesfera).
Estudiar si és possible extrapolar els resultats amb figures de més de 4 dimensions.

— Estudiar aquelles figures de 4 dimensions caracteritzades per ser regulars.
Descriure els processos pels quals es poden aconseguir i dir-ne les caracteristiques
principals.

— Crear, utilitzant diferents tipus de materials, alguns models tridimensionals de
figures de 4 dimensions.

Val a dir que tot i que els objectius del treball s’han mantingut al llarg del procés de creacio
d'aquest, a mesura que s’avancava hem anat donant més o menys importancia als
diferents apartats depenent de la quantitat i del tipus d'informacié de la que disposavem. En
alguns casos, fins i tot, hem cregut convenient afegir nous capitols per tal de crear un bloc
més compacte, homogeni i interelacionat. L’elevada complexitat que comporta I'estudi de
les figures més basiques ha condicionat el fet que només s’hagi pogut endinsar en I'analisi
de dues figures de 4 dimensions: I'hipercub i la hiperesfera.
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0.3. Temes tractats en el treball

0.3.1. TEMES TRACTATS AL COS DEL TREBALL

El fet que el present treball tracti d’'un tema tan poc concret com és la quarta dimensié ens
ha obligat a limitar-lo de manera substancial. Tenint en compte I'extensid, el grau de
dificultat i la relaci6 entre els diferents apartats hem decidit tractar una série de questions.
Hem procurat elegir-les de manera que s’ajustessin i responguessin també als objectius
que ens haviem marcat. Aixi, el treball es presenta dividit tematicament de la segient
manera:

e Apartat 1: Introduccié als conceptes

e Apartat 2: L’hipercub

e Apartat 3: La hiperesfera

e Apartat 4: Poligons regulars, poliedres i politops

Al primer apartat duem a terme una extensa presentacié dels conceptes basics. Es descriu
el significat de “dimensi¢” i també el d’'una “quarta dimensié”. Es presenta el raonament per
analogia i s'empra aquest per fer unes primeres especulacions sobre figures i espais 4D.

El segon apartat se centra exclusivament en la figura de I'hipercub (I'analeg del cub pero de
4 dimensions). S’estudien les seves caracteristiques, els diferents models tridimensionals
d'aquest, les figures que s’obtenen en la seva secci6 aixi com aquelles que lintegren. Es
cerca una formula per trobar les cares de diferents dimensions que constitueix un cub de
qualsevol dimensi6 (n-cub).

El tercer apartat el dediquem a la hiperesfera (analoga de I'esfera perdé amb 4 dimensions).
En deduim la seva equacié, n’estudiem les seccions i mitjangant 'analogia en determinem
algunes de les seves caracteristiques. Cerquem una formula per calcular el volum de
qualsevol esfera de qualsevol dimensié i mitjangant la computacié de les dades analitzem
els resultats per a dimensions més grans de 4.

L'altim apartat consisteix en una breu introduccié a les figures regulars de 2, 3 i sobretot 4
dimensions. La gran complexitat que comporta I'estudi d’aquestes ultimes ha obligat a
tractar aquest apartat de manera superficial. Es descriuen les caracteristiques dels politops
regulars (figures 4D regulars), es verifica la formula d’Euler per figures de 4 dimensions i
s’apunta a una generalitzacié.

0.3.2. TEMES TRACTATS ALS ANNEXOS DEL TREBALL

L'elevada extensié del cos del treball ens ha obligat a col-locar algunes informacions que
hem cregut interessants en annexos. En concret n’hem elaborat 6. Procedim a fer un breu
esment del contingut de cada un d’ells:

- Annex 1: Audiovisual

En aquest annex fem una breu explicacié d’'un document audiovisual que tracta la figura
de 'hipercub i que ha estat traduit i subtitulat al catala. S’hi pot trobar la transcripcié en
anglés i la seva corresponent traduccié, aixi com una breu explicacié de les seves
parts.
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- Annex 2: Applets

En ell expliqguem el funcionament basic d’'una série d’applets (inclosos al disc del
treball), els quals ens permeten estudiar determinats politops fent us d'ulleres 3D. A part
d’aquests, existeix un ultim applet que ens permet estudiar les seccions de tots els
politops regulars.

- Annex 3: La quarta dimensio recreativa
En aquest apartat fem referéncia a tot allo que no és estrictament cientific que gira al
voltant de la quarta dimensié: art, jocs, ciéncia ficcio...

- Annex 4: Ampliacié de I'n-simplex

En aquest annex ampliem la informacié sobre la figura del n-simplex. Desenvolupem
una féormula que ens permet calcular el nombre de r-cares que lintegren i lliguem el
resultat amb I'expansié d’'un determinat binomi.

- Annex 5: Fabricacié de models
En aquesta part expliquem breument el procés que hem seguit per a construir cada un
dels 3 models d’hipercub que adjuntem amb aquest treball.

- Annex 6: Calculs

Finalment, en I'Gltim annex hi podem trobar alguns calculs als quals hem fet referéncia
en el cos del treball.

0.4. Procés d’elaboracié, metodologia i us del disc

0.4.1. PROCES SEGUIT PER CREAR EL TREBALL

Per a crear aquest treball hem seguit diferents etapes, forca diferenciades entre elles i que
procedim a descriure a continuacio.

Com que el tema sobre el que s’havia de basar el projecte era forca desconegut, el primer
periode el varem dedicar a llegir la bibliografia adequada, per tal d’entendre els conceptes i
poder comencar a visualitzar quins serien els punts que caldria introduir al treball.
Paral-lelament a aquest procés ja se seleccionaren els temes més interessants i es féu una
primera tria molt amplia que reduiria el gran volum d'informacié diversa de la que
disposavem. Val a dir que aquesta primera fase es dugué a terme durant els mesos de
juny, juliol, agost i primera meitat de setembre de 2005.

La segona fase s'inicia a mitjans de setembre i en aquesta férem una segona tria de
continguts. Seguint els consells del tutor i tenint en compte la informacié de la que es
disposava, es varen decidir els apartats dels que constaria el treball i se'n féu un petit
esborrany de cadascun d’ells.

Finalment, a partir del mes d’octubre i fins el desembre es dugué a terme la redaccié del
text. Aquest procés comporta també I'organitzacié dels documents grafics i audiovisuals,
aixi com la creacié del disc del treball. La fabricacié dels models tridimensionals fou
paral-lela a tots aquests processos i tingué lloc entre els mesos de setembre i desembre de
2005.
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0.4.2. PRESENTACIO DEL TREBALL

El present treball es presenta en fulls DIN A4. La familia de lletra emprada per la redacci6
del cos és Arial amb una grandaria d’onze punts. Per crear les capgaleres hem utilitzat la
familia de lletra Technoid amb grandaries de quinze i setze punts.

Hem utilitzat un espai entre linies simple tot i ser conscients que es recomanava emprar 1,5
espais. El motiu pel qual hem decidit fer-ho aixi és I'elevada extensi6 que prenia el treball si
seguiem aquest criteri ja que hi ha una gran quantitat de cos escrit.

0.4.3. UTILITZACIO DEL DISC DEL TREBALL

El present treball es presenta dividit en diferents apartats, tal com ja hem explicat
anteriorment. La gran quantitat aixi com la importancia del material audiovisual que hem
trobat, ha incentivat la creacié d’un disc en el que es recopilés tota aquesta informaci6. A
linterior d’aquest s’hi poden trobar, organitzats per capitols, tots aquells documents digitals
als quals hem anat fent referéncia en el treball. Aquelles informacions que es poden trobar
al disc del treball estan indicades de la manera segiient:

é >2.1. Procés de formacio de I’hipercub
0 l

Aquest és el nom pel qual trobarem
El segon nombre indica quin document identificat el document audiovisual al

digital és. En aquest cas es tracta del disc del treball.
primer document de I'apartat 2.

El primer nombre indica
a quin apartat del treball
correspon. En aquest
cas és del capitol 2.

La icona indica que
hi ha un document
digital disponible al
disc.

Aixi doncs, per trobar el document corresponent a aquest exemple, hauriem de consultar el
menu numero dos del disc i clicar sobre “Procés de formacié de I'hipercub”.

10
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1.1. Introduccio al concepte de dimensid

Per comprendre el tema sobre el que es basa aquest treball és indispensable introduir
primer el terme “dimensié” i explicar el significat amb el que ens hi referirem durant tot el
treball. Hem de dir que es tracta d’una paraula polisémica i que engloba diversos significats
diferents, alhora que comporta una elevada complexitat per fer-ne una definicié concisa.

La paraula dimensio prové del mot llati dimensus, el qual literalment significa “mesura”.
Aixi, fisicament entenem dimensié com I'extensi6 mesurable d’'un cos en qualsevol dels
sentits determinats. Popularment es diu que vivim en un espai de tres dimensions
(espacials), la qual cosa vol dir que podem desplagar un punt a través de tres eixos, cada
un dels quals és perpendicular als altres dos.

—

I.1: Espai bidimensional. Els dos
eixos (x i y) sén perpendiculars,
de manera que intersecten
formant un angle recte.

I.2: Espai tridimensional. Els tres
eixos son perpendiculars entre
ells. Com que el grafic és de dues
dimensions, el tercer eix (z) el

dibuixem esbiaixat en perspectiva.

Una altra manera d’explicar el concepte de dimensioé és per mitja dels graus de llibertat.
Imaginem, en primer lloc, una mosca, ficada dins una caixa ajustada al tamany del seu cos.
En aquest cas, la mosca no pot variar la seva posici6, no té cap grau de llibertat.

1.3: La mosca es troba atrapada dins la caixa,
sense possibilitat de canviar la seva posicio. Si
considerem que la caixa és I'espai on viu la
mosca, no fa falta donar cap informaci6é per
determinar la seva posici6 exacta, ja que
nomes en pot ocupar una. En aquesta situacié
no té cap grau de llibertat.

A continuacié passem a imaginar aquesta mateixa mosca peré aquest cop introduida en un
tub infinitament llarg i de diametre practicament igual al del cos de l'insecte. Ara la mosca
es podra moure endavant i endarrere. Si nosaltres graduem el tub amb una recta de
nombres reals podrem definir la posicié exacta de la mosca (entenent-la com un Gnic punt),
estigui on estigui, donant un sol nombre que ens dira a la distancia que es troba de I'origen.
Podrem dir doncs que la mosca té un sol grau de llibertat i, per tant, que viu en un espai

11
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d'una sola dimensio. Arribat a aquest punt podem plantejar una situacié lleugerament
diferent. Imaginem que el tub en el qual es troba ficada la mosca és flexible i que el podem
deformar corbant-lo. Tot i que ara I'espai on hi ha la mosca esta corbat en un altre sentit
(dimensid) aix6 no canvia el fet que la posicié de linsecte segueixi sent perfectament
identificable donant un Unic valor. El seu espai segueix tenint una sola dimensio (un sol
grau de llibertat).

I.4: La mosca (figura vermella), entesa com
un punt, es mou endavant i endarrere.
L'observador, mirant la graduacié del tub, pot
definir-ne la posicié donant un sol nombre o

1.5: Tot i que ara I'espai on viu la mosca esta
corbat en una altra dimensid, la llibertat de
linsecte continua estant limitada a una sola
direccio (un grau de llibertat). La seva posicio

coordenada, que en aquest cas seria (3). segueix estan perfectament determinada per

un sol nombre. L’espai on viu té encara una
sola dimensié.

Seguim i ara ens imaginem que la mosca viu a I'espai comprés entre dues lamines de
plastic semi-rigid. Deixem una separaci6 igual al gruix del seu cos. L'insecte disposara ara
d’'un nou grau de llibertat; a més de moure’s endavant i endarrere podra desplagar-se a
dreta i esquerra. Per tal de determinar qualsevol posicié haurem de dibuixar sobre el vidre
dos eixos perpendiculars i graduar-los amb la recta de nombres reals. Projectant la posicié
de la mosca sobre els eixos obtindrem dos valors, amb els quals definirem la seva posicié.
La mosca disposara ara de dos graus de llibertat, podrem dir que viu en un espai de dues
dimensions. Analogament al que hem fet amb el tub,
7] podem corbar els plastics de manera que quedin
- ondulats i es mantingui la separacié entre ells. L’espai
6 quedara deformat en una nova dimensié perd aixd no
Eoe) canviara el fet que la mosca segueixi vivint en un espai
de dues dimensions i que la seva posici6 segueixi sent
perfectament identificable donant dos valors.

2 = : 1.6: La mosca ara pot moure’s en dues direccions
= : diferents (esquerra-dreta i endavant-endarrere) i per tan
: té dos graus de llibertat. Direm doncs que viu en un
L1 espai de dues dimensions i per expressar la seva posicio
ho haurem de fer mitjancant dos nombres (coordenades)
que en aquest cas serien (4,3).

12
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Ja per acabar podem deixar que la mosca voli lliurement a l'interior d’'una caixa cubica
transparent. En aquest cas l'insecte disposa d’un altre grau de llibertat més que permet que
es desplaci amunt i avall. Si ara 'observador vol determinar-ne la posicié haura de procedir
a graduar tres arestes que conflueixin a un mateix vértex de la caixa amb la recta de
nombres reals i projectar, en un instant determinat, la posicié de I'insecte a cada un dels
eixos. Aixi aconseguira 3 valors que descriuran perfectament el seu emplagcament en un
moment concret.
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I.7: La mosca (representada per la bola roja) vola ara
lliurement, disposant de tres graus de llibertat. Si volem dir en
quin lloc es troba hem de projectar la seva posicié a les
parets del cub tal com s’indica a la figura i donar tres valors,
que en aquest cas serien (4,5, 3, 3).

En el mon en qué vivim fa falta donar tres nombres per definir un punt ja que tenim tres
graus de llibertat (amunt-avall, dreta-esquerra i endavant-endarrere). Aixi doncs diem que
vivim en un espai de tres dimensions fisiques.

En els exemples anteriors ens hem adonat que quan la mosca vivia en un espai d’'una
dimensio (dins el tub) o de dues (entre les dues plaques de plastic), podiem corbar el seu
espai cap a una nova dimensié sense que aixo fes variar els graus de llibertat que tenia
linsecte per moure’'s. De fet, si la deformaci®é és prou suau, des de linterior sera
practicament impossible determinar si I'espai esta corbat o no en una altra dimensié.
Arribats a aquest punt, i havent vist els tres graus de llibertat (tres dimensions) que tenim
en el nostre univers podem perllongar la deduccié que hem fet en els dos casos anteriors i
preguntar-nos: Pot ser que el nostre espai tridimensional estigui corbat cap una altra
dimensi6 i nosaltres no ho notem? Si realment ho estigués, cap on ho estaria? La resposta
a la primera pregunta és complexa i de fet hi ha diversos models actuals de I'univers que
discuteixen aquest assumpte. La segona té una resposta simple: si realment el nostre espai
tridimensional esta corbat ho ha d’'estar cap a una nova direccid, 'anomenada quarta
dimensio.

13
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1.2. La quarta dimensié

1.2.1. INTRODUCCIO AL CONCEPTE

Ara que ja hem exposat el significat de la paraula dimensié podem procedir a concretar
més el concepte al voltant del qual gira aquest treball: la quarta dimensio.

La quarta dimensié es defineix com una altra dimensid, analoga a les altres 3 ja
conegudes, que s’estén perpendicularment als tres eixos corresponents a les 3 dimensions
esmentades a l'apartat anterior. Es tracta d’'una direccié diferent a qualsevol de les
direccions que podem assenyalar en el nostre espai tridimensional. Dit d’'una altra manera,
a l'espai quadridimensional podem trobar una recta (la quarta dimensié) que sigui
perpendicular a les tres arestes d’'un angle solid triedral (com el que trobem al vértex d’un
cub) i que, per tant, sera perpendicular a qualsevol recta que puguem tracar a I'espai
tridimensional.

Com que nosaltres vivim en un espai de tres dimensions no podem assenyalar-ne una
quarta, tanmateix si que en podem fer una projeccié, de la mateixa manera que podem
dibuixar en un suport de dues dimensions (paper) la projeccié d’'un cub que realment en té
tres. Aixi, I'eix corresponent a la quarta dimensié el dibuixarem com un quart eix esbiaixat
com podem veure en el grafic seguent:

y 1.8: L'eix marcat en vermell correspon al de la
quarta dimensié. Es tracta d’'una projeccié d’'un
espai de 4 dimensions a un suport de 2 dues (el
paper). Aixi ens veiem obligats a dibuixar I'eix de
forma esbiaixada en perspectiva. Aquesta técnica
és emprada freqiientment per fer projeccions de
figures de quatre dimensions sobre suports que

X en tenen dues. Podrem veure-ho més clarament
a l'apartat que fa referéncia a I'hipercub.

Cal remarcar que quan fem una projeccio de qualsevol forma o figura quadridimensional
sobre el paper estem fent una doble projeccié. En primer lloc projectem a I'espai de tres
dimensions una figura que en realitat en té quatre, per la qual cosa dibuixem les arestes
corresponents a la quarta dimensié de manera esbiaixada. A continuacié fem una segona
projeccié per poder plasmar I'objecte tridimensional sobre el paper. En aquest pas ens
veiem obligats a dibuixar també esbiaixat I'eix que correspon a la tercera dimensio.

Amb aquest comentari simplement volem destacar la gran quantitat d’'informacié que es
perd quan projectem un objecte de quatre dimensions en un suport de dues com és un full.
Per evitar aquest problema, alguns dels models que es presenten en el present treball han
estat creats per ser vistos mitjancant ulleres estereoscopiques, amb la qual cosa podem
visualitzar les figures en tres dimensions i fer-ne una projeccié més fidedigna.

Pero arribats a aquest punt no podem evitar preguntar-nos: podem veure la quarta
dimensié? Aquesta pregunta té una resposta rotunda i en primera instancia
desencoratjadora: No. Els espais multidimensionals sén impossibles de visualitzar, aixi que
és inutil tan sols intentar-ho. Hermann von Helmholtz (1821-1894), eminent fisic alemany,
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comparava la incapacitat per “veure” la quarta dimensié amb la incapacitat d’un cec per
concebre el concepte del color. Tant s’hi val I'elogiéncia o concisié que utilitzem per
descriure el color vermell a una persona cega, les paraules fracassen a I'hora de definir una
cosa tan rica en significat com ho és el color. Fins i tot els matematics experimentats i els
fisics tedrics que han treballat durant anys en espais de més dimensions admeten que no
podem visualitzar-los. En lloc d'aix6 la majoria d’ells es limiten a fer-ne interpretacions
estrictament algebraiques mitjangant equacions matematiques. Una manera de
comprendre el motiu pel qual ens és impossible veure dimensions superiors és fent Us
d'una série d’analogies, les quals son explicades ampliament en el capitol 1.4 d’aquest
mateix apartat.

Certament, el fet que no puguem observar i ni tan sols interactuar amb altres dimensions
fisiques fa que sigui complicat d’acceptar (o de no rebutjar) la seva possible existéncia. Ens
podem preguntar el motiu pel qual haurien d’existir altres dimensions a part de les tres que
ja coneixem. Peter Freund, professor de fisica teodrica a Iinstitut Enrico Fermi de la
Universitat de Chicago respon a aquesta qilestio afirmant que les lleis de la naturalesa sén
més simples en dimensions més altes. “Tradicionalment -ens recorda Freud- els cientifics
s’han mostrat escéptics respecte a les dimensions més altes perqué aquestes no podien
ser mesurades i no tenien cap Us concret. No obstant, hi ha una acceptacié creixent entre
els cientifics actuals que qualsevol teoria tridimensional és “massa petita” per descriure les
forces que governen el nostre univers”. Com ell mateix ressalta, un tema fonamental i molt
recorrent a 'dltima década de la fisica ha estat el que les lleis de la naturalesa es fa més
simples i elegants quan s'expressen en dimensions més altes, que son el seu ambit
natural. Les lleis de la llum i la gravetat troben una expressi6 natural quan s’expressen en
un espai-temps multidimensional. El pas clau per unificar les lleis de la naturalesa
consisteix en incrementar el nombre de dimensions de d’espaitemps fins que s’hi puguin
acomodar més i més forces. En dimensions més altes, tenim suficient “lloc” per unificar
totes les forces fisiques conegudes.

1.2.2. DESIGNACIO DE LA QUARTA DIMENSIO

Com ja hem vist en l'apartat 1.1. [l'espai en el que vivim té tres dimensions, ja que
disposem de 3 graus de llibertat en els quals ens podem moure. La quarta dimensié
definida en els paragrafs anteriors fa referéncia a una dimensié fisica (un altre grau de
llibertat). No obstant aixo, una de les teories més famoses de tota la historia utilitza una
notacié lleugerament diferent i que pot induir a confusié. En la teoria de la relativitat
d’Einstein, el nostre espai s'explica com un entramat format per les tres dimensions
espacials ja conegudes i el temps. Es tracta doncs d’un bloc anomenat espai-temps, de 4
dimensions i en el qual la quarta dimensio és el temps. Els cientifics d’avui dia, pero, estan
interessats en anar més enlla de la concepcio d’Einstein de la quarta dimensié. Actualment
linterés cientific se centra en la cinquena dimensié (una dimensié espacial més a part del
temps i les altres tres dimensions espacials). Tot i aixo, per evitar qualsevol confusid i
simplificar els conceptes, en aquest treball la quarta dimensié fara referéncia a la quarta
dimensi6 espacial i desestimarem el temps si no s'indica el contrari.
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1.3._La idea sobre altres dimensions: sequiment historic

Si ens remuntem en la historia de la humanitat descobrim que les especulacions sobre la
possibilitat que hi hagi altres dimensions a part de les tres ja conegudes sorgeixen forca
enrere, fa uns 2400 anys. Una de les primeres persones que de manera indirecta va
suggerir aquesta idea fou Platé (427-347 aC).
Al sete llibre de La Republica, una de les seves obres més importants trobem, una famosa
al-legoria coneguda com el “mite de la caverna”. En ella Plat6 ens demana que imaginem
una estranya raca d’homes que estan tancats en una cova subterrania, encadenats de tal
manera que nomeés poden veure les ombres que es projecten a la paret de la cova. Darrere
aquests homes hi ha un retaule baix i darrere aquest una foguera. Els objectes es mouen
endavant i endarrere sobre aquesta taula i el foc projecta les seves ombres sobre la paret
de la cova. Els presoners pensen que aquestes ombres son I'Gnica realitat i ni tan sols
s'imaginen que ells mateixos puguin tenir cossos tridimensionals. Parlen i es relacionen
peré admeten que tot el que existeix sén aquelles ombres.
Aquesta idea és particularment interessant i fou molt avancada a la seva época. Els presos
no coneixen altra cosa que no siguin les ombres projectades a
la paret i per tant interpreten que aquella és tota la realitat que
pot existir. Aquesta al-legoria indueix a qiiestionar-nos si la
dimensionalitat del nostre espai es limita a alld que veiem o si
és simplement la projeccié d’'una realitat que posseeix infinites
dimensions.
Tot i que avui en dia podem fer aquest tipus d’interpretacio del
"mite de la caverna’, al seu temps aquest text destaca en
altres sentits, principalment filosofics, la qual cosa va fer que
la idea de la quarta dimensi6 hagués d’esperar encara
diversos segles en sortir a la llum publica i ser coneguda
socialment.
De fet, aix6 no va tenir lloc fins a mitjans del segle XIX. August
Mobius (1790-1868), matematic i astronom alemany, sembla
ser que fou la primera persona que va comengar a especular
de manera explicita sobre I'existéncia d’'una quarta dimensio
espacial. El 1827, donant-se compte de que la silueta
corresponent a una ma dreta podia ser girada i convertida en
la silueta d'una ma esquerra passant la figura a través d’'una
tercera dimensi6 (una més que les dues que té I'objecte en si
mateix), Mobius determina que seria necessari un espai de
quatre dimensions per “girar” una ma dreta de manera que
aquesta esdevingués una ma esquerra.

A la década de 1850, en dos documents, el matematic suis
Shingham uiliza Bokauss do Ludwig Schiafli (1814-1_895) va determinar totes les figures
geometria analitica per produir regu!ars de qga_tre dw_nensnons, va calcular les seves
i lustracions que mostraven  Propietats numeériques i métriques i va crear un model
parcialment figures de quatre  d’hipercub de quatre dimensions i un de cinc.

ﬁgg:isgg\s projectades a  Tot | el ‘seu extraordinari tr_ebg_ull, aquest romangué poc

. conegut i posteriorment s’atribuiren de forma equivocada

diversos d’aquests descobriments a un matematic america anomenat William Stringham. EI
seu article publicat el 1880 al American Journal of Mathematics era menys complet que el
de Ludwig Schlafli perd aquest incloia per primera vegada diverses il-lustracions de figures

1.9: A Tarticle de 1880, W.
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quadridimensionals. Aquestes varen impulsar de
forma extraordinaria l'estudi de figures de
dimensions superiors i varen captivar la
imaginacié de matematics i public en general.
També per aquells temps, el fildsof i matematic
Charles H. Hinton (1853-1907) expressa el seu
convenciment de que les persones podien ser
entrenades per veure la quarta dimensio i que de
'experiéncia se’'n seguiria una notable alliberacié
espiritual i intellectual. ElI seu métode
d’entrenament consistia en estudiar I'aparenca
canviant d’'uns hipercubs ('analeg del cub en un
espai de quatre dimensions) pintats segons un
determinat codi de colors mentre aquests
travessaven un espai tridimensional.

El 1884, el mossén i educador anglés Edwin
Abbot Abbot (1838 — 1926) va publicar una
novel-la titulada “Planilandia: una novel-la de
moltes dimensions” sota el titol original “Flatland:
a romance of many dimensions”. Basada en una
versio simplificada del métode de Hinton, narra
I'experiéncia d’'uns sers bidimensionals que sén
visitats per una esfera del mén tridimensional. Els
“planilandesos” intenten comprendre I'existéncia

1.10: Dibuixos publicats el 1880 per W.
Stringham.

d’'una dimensié superior des de la seva posicié en un mén de dues dimensions al mateix
temps que es fa una intel-ligent satira de la societat victoriana. Encara avui dia la novel-la
d’Abbot és considerada una obra mestra per la seva simplicitat i alhora per la gran quantitat
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1.11: Coberta de la primera edicié
de la novel-la de E. A. Abbot

d’eines que atorga al lector que s’inicia a I'especulacié
sobre dimensions superiors. Com veurem més endavant
l'analogia d'un mén bidimensional és indispensable a
I'hora de preveure comportaments i interpretar seccions
de figures de dimensions superiors a la nostra.

A finals del segle XIX va créixer I'interés popular per la
quarta dimensié. Aquest fet vingué principalment motivat
pels notables descobriments matematics que havien
tingut lloc a finals d’aquell segle. Durant la década de
1840, Arthur Cayley a Anglaterra i Hermann Grassmann
a Alemanya varen publicar les primeres obres
significatives sobre espais n-dimensionals. Mentre aixo
passava, Bernhard Riemann desenvolupava |la
geometria no euclidiana, que posteriorment resultaria
ser clau en l'exploraci6 de dimensions superiors. A
comencaments del segle XX “la quarta dimensié” era un
tema d’aparicié freqlent en les publicacions cientifiques
americanes. Cal destacar la iniciativa que al 1909 la
revista Scientific American va impulsar i que consistia en

recompensar amb $500 aquell article de menys de 2500 paraules que millor aconseguis
descriure el concepte de la quarta dimensi6. Es varen rebre 245 assajos d’arreu del mon,
prova irrefutable de I'elevat interés social que despertava el tema.
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També a principis del segle XX, Jules-Henri Poincaré (1854-1912), considerat el matematic
i pensador francés més important de la historia, va discutir repetidament la possibilitat de
percebre la quarta dimensid, donant credibilitat a especulacions fetes anteriorment. EI 1902
publica “Science and Hypotesis” , on explicava que la geometria i el concepte de la
dimensionalitat de I'espai no existeix a la nostra ment ni 'adquirim amb els nostres sentits.
Al mateix temps que Poincaré creava la seva obra la idea de la quarta dimensi6 s’estenia
ampliament entre els artistes de I'época. Maurice Princet,
matematic que treballava per una companyia
asseguradora, va ensenyar les bases de la geometria
tetradimensional als seus amics artistes entre els quals
s’hi trobava Marcel Duchamp, Juan Gris, Jean Metzinger i
probablement Pablo Picasso entre altres. De fet, el corrent
artistic del cubisme deu les seves bases a la voluntat de
visualitzar objectes (basicament cubs) des d’'una dimensié
superior.
El 1903, E. Jouffret publica a Franca un text elemental
sobre geometria de quatre dimensions que incloia noves
il-lustracions.
Daltra banda, Poincaré afirma que tot i que era
N | e tedricament possible veure la quarta dimensié, aixd només
e e seria possible per una persona que dediqués tota la seva
%ah e vida a entrenar-se per a tal .propdsit. Aquesta avaluacié
tan pessimista fou reforcada el 1947 pel famés gedmetre
1.12: Imatges que acompanyaven el H. S. M. Coxeter (1907-2003) que sostingué que només
text de E. Jouffret. una o dues persones aconseguirien visualitzar la quarta
dimensi6 amb la mateixa facilitat com ho podem fer
nosaltres amb les altres tres. Perd només un quart de segle més tard el psicoleg de la
percepcié Heinz Von Foerster va anunciar que
qualsevol subjecte podia aprendre el métode per
veure la quarta dimensio.
Ja a I'tltim quart del segle XX, una de les persones
amb més influéncia en lestudi de la quarta
dimensi6 ha estat el Dr. Thomas F. Banchoff.
Professor de matematiques especialitzat en
geometria de la quarta dimensio, imparteix classes
a la universitat de Brown. Juntament amb els seus
col-laboradors del Brown’s Computer Graphics
Laboratori, Banchoff fou pioner en la utilitzacié de
grafics animats generats per ordinador per estudiar
seccions i projeccions dobjectes de quatre :
dimensions. Juntament amb el professor Charles g:;;‘a;'(;fe’%“bue:;d"mt 3::33; o]
Stra_us_s’ Banchoff gfava el 1978 un documept primeres ' visgalitzacions informatiques
audiovisual que explica detalladament el procés creades per T. F. Banchoff.
d'intersecci6 de dhipercub amb un espai
tridimensional aixi com les diferents projeccions d’aquest. El document es titula Hypercube:
Projections and Slicing i s’hi fa referéncia en posteriors apartats d’aquest mateix treball. Cal
també destacar el treball d’altres matematics com Rudy Rucker, amb llibres com La Quarta
Dimensi6é o Spaceland, A Novel of the Fourth Dimension i Michio Kaku, fisic teodric de la
Universitat de Nova York i principal desenvolupador de la teoria de supercordes.
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1.4. La importancia de I'analogia

Abans d’'abordar l'estudi de la quarta dimensié des d’'un punt de vista estrictament
matematic és interessant comencar a familiaritzar-s’hi d’'una manera més practica. Com ja
he comentat en la breu ressenya historica feta anteriorment, una de les obres més influents
i que més ha ajudat a comprendre el concepte de les dimensions és “Flatland: a romance
of many dimensions”, la qual fou publicada el 1884. El seu autor, Edwin A. Abbott, era
educador i matematic d’ideologia liberal i va concebre aquesta obra amb una doble finalitat.
En primer lloc dugué a terme una intel-ligent satira social de I'época i d’altra banda crea un
text que dotava al lector amb una gran quantitat d’eines que li permetrien interioritzar
determinats principis geomeétrics gairebé de manera intuitiva. Utilitzarem algunes de les
situacions il-lustrades en el llibre per comengar a habituar-nos amb el concepte de
dimensions superiors.

No obstant aix6 cal dir que en el llibre no apareix el concepte de “la quarta dimensié”. Com
és possible doncs que puguem utilitzar-lo per aquest treball en el que pretenem estudiar
una dimensi6 superior a la nostra? La resposta és senzilla i resulta ser la idea clau:

— L'espai quadridimensional és a I'espai tridimensional, com I'espai tridimensional és a
I'espai bidimensional.

Aquesta ultima afirmacié significa que si ens situem en un espai bidimensional i estudiem
qué succeeix en la interacci6 d’aquest amb I'espai tridimensional podrem raonar per
analogia i imaginar qué passaria a I'espai tridimensional si aquest interactués amb I'espai
de quatre dimensions. Dit d'una altra manera, un ésser que visqués en un espai de dues
dimensions i intentés comprendre o imaginar una tercera dimensié desconeguda per ell es
trobaria en la mateixa situacié en que ens trobem nosaltres, éssers tridimensionals, davant
el repte de comprendre una quarta dimensié.

Hem fet mencié d'una paraula en les linies anteriors que resulta ser de vital importancia per
a comprendre el treball: I'analogia. Analogia es defineix com la relacid existent entre coses
0 persones que presenten caracteristiques comunes; semblanga, similitud. Aqui es tracta
de similitud entre dues dimensions: la segona i la tercera.

A continuacié presentem alguns exemples en els que fem servir 'analogia entre
dimensions per deduir propietats i caracteristiques de I'espai i els objectes 4D. En primera
instancia descrivim la situacié coneguda en I'espai de dues dimensions i seguidament
I'extrapolem al cas de tres dimensions.

a) Impossibilitat de comprendre dimensions superiors

Planilandia és un univers infinit de dues dimensions que el podem imaginar com un full de
paper primissim d'extensi6 il-limitada. Els seus habitants només poden ser punts,
segments, poligons o cercles, els quals viuen i es desplacen pel seu interior. En una
ocasi6, una esfera de tres dimensions s’apropa a l'univers planilandés i intenta convéncer
als seus habitants de I'existéncia d’'una tercera dimensié perd aquests, evidentment, no
entenen que hi pugui haver una altra dimensio: ells mateixos sén éssers bidimensionals,
I'univers en el que viuen té dues dimensions i tot el que hi ha en aquest també té solament
dues dimensions. Qualsevol intent d'imaginar una tercera dimensié sera infructudés doncs
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no disposen del tercer grau de llibertat que els fa falta per explorar aquesta tercera
“direccio”.

' » _ »

I.14: Planilandia vista en planta, perfil i en perspectiva. Els seus habitants, sers de dues dimensions que
viuen confinats al seu univers bidimensional no coneixen I'existéncia d’una tercera dimensié i ni tan sols
la poden imaginar. La seva vista, només els permet veure linies i punts davant seu que representen els
seus compatriotes. L'esfera tridimensional és invisible per ells sempre que es trobi a una altura diferent
a la que ocupa I'espai bidimensional de Planilandia.

Vista la situacié de desavantatge en la que es troben els planilandesos a I'hora d’interpretar
la tercera dimensi6 que proclama I'esfera tridimensional, ja podem suposar que nosaltres
ens trobem en una situacié semblant quan intentem imaginar la quarta dimensié. El nostre
moén és tridimensional, totes les coses que el conformen tenen aquesta mateixa
caracteristica i és completament inutil que ens escarrassem en intentar visualitzar una
quarta “direccié”. No tenim cap mitja amb el que “elevar-nos” cap a aquesta, la naturalesa

del nostre univers ens ho impedeix.

b) Visi6 de I’espai n-dimensional des d’una dimensié superior (n+1)

Centrem-nos ara en el qué observa un dels habitants de Planilandia. El seus ulls només
son capacos de veure els perfils de la resta d’habitants, que es limiten a rectes i punts.
Tenen doncs una visié unidimensional. Pero ara suposem que I'esfera de la que hem parlat
en I'exemple d’abans esta dotada de vista i mira el mén de Planilandia. Tot i que els seus
habitants tenen una visié6 molt pobra del seu univers que es limita a punts i linies, si aquest
és observat des d’una dimensié superior el resultat és molt diferent. L’esfera sera capag de
veure el conjunt de persones que hi ha en una determinada area, podra mirar dins les
cases i sera capag de veure fins i tot l'interior dels planilandesos. Dit d’'una altra manera,
des d’'una dimensié superior, qualsevol punt de I'espai bidimensional pot ser observat
sense cap mena d'impediment. Per molt que un planilandés tapi un objecte determinat
I'esfera el podra veure completament degut al grau de llibertat extra del que disposa.

1.15: En la imatge superior veiem

Planilandia des de la perspectiva Feta aquesta apreciacio en el

de l'esfera elevada en la tercera mén bidimensi_onal . pOd_e!'n
‘ ‘ dimensi6. La zona ombrejada intuir per analogia quina visié
representa el camp de visi6 del podria tenir un suposat ésser
triangle i a la part inferior de quatre dimensions del

s’'observa el que aquest veuria: . b .
qualsevol poligon, esfera o recta nqstre mon tndlr_nenSlonaI. En
és, als ulls d'un planilandés, una | primer lloc, seria capa¢ de
A simple recta de més o menys | veure qualsevol objecte del
longitud. La riquesa visual que
s'obté en elevar-se en una altra
dimensié és molt notable.
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nostre espai, per molt tapat i tancat que aquest estigués. El grau de llibertat suplementari
del que disposaria li permetria poder veure cada racé de dins una sala tancada o fins i tot
linterior del nostre cos. Als seus ulls no podriem amagar absolutament res. De la mateixa
manera podem preveure el tipus de sistema visual que hauria de tenir. En el mén de
Planilandia els ulls dels seus habitants son simples punts o linies que obtenen imatges
també només de linies (unidimensionals). Al mén tridimensional les persones disposem
dels ulls, els quals perceben una série d'imatges bidimensionals. La nostra retina té
solament dues dimensions. Si existis un ser de 4 dimensions, probablement disposaria d’'un
ull en forma esférica, recoberta de terminals nerviosos; la qual cosa li permetria obtenir
imatges de tres dimensions.

c) L’espai d’unes determinades dimensions (n) divideix en dues parts I'espai de
dimensié immediatament superior (n+1)

Tal com ja hem dit, podem imaginar Planilandia com un full de paper prim que s’estén
il-limitadament. Si aquest full de paper infinitament gran esta situat en un espai que té una
dimensié més (I'espai tridimensional), I'univers de Planilandia dividira el nostre espai 3D en
dues parts separades I'una de l'altra. Si un ser tridimensional que es troba per sobre de
Planilandia vol passar a la part inferior, forcosament haura de travessar aquest mon
bidimensional per arribar-hi. Podem anomenar la zona del nostre univers situat per sobre
de Planilandia amb el mot “dalt” i la zona que es troba per sota “baix’.

Zona de I'espai 3D

< anomenada “dalt’
<€+— Planilandia

= Zona de I'espai 3D
— anomenada “baix”

1.16

Raonant per analogia podem donar-nos compte que un espai 3D i un espai 4D
interactuaran d’'una manera semblant. Suposant que el nostre espai tridimensional esta
ficat dins un espai de 4 dimensions, aquest ultim quedara dividit en dues parts pel de 3
dimensions. Nosaltres no podem interactuar amb I'univers 4D perd si que podem donar
noms a les seves dues meitats. Seguint la notacié que proposa Charles H. Hinton
anomenarem “ana” la porcié d'espai 4D situat en una direccid “superior” a la nostra i “kata”
a la porcié situada per “sota”. Qualsevol objecte quadridimensional que vulgui passar de
ana a kata o a l'inrevés, es veura obligat a travessar el nostre univers 3D.

d) Possibilitat de veure les projeccions d’objectes de dimensions superiors

Com ja hem dit en I'apartat a, un ésser d’unes determinades dimensions no pot imaginar un
espai de més dimensions i, en principi, tampoc hi pot interactuar. No obstant aquest si que
pot recorrer a alguns métodes per tal d’estudiar objectes de dimensions superiors. Un
d’aquests metodes és el de les projeccions. Imaginem Planilandia un altre cop i I'esfera
tridimensional situada per sobre. Considerem també que l'esfera és translicida. Els éssers
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2D no la poden veure perd si aquesta se situa entre una font de llum i I'univers planilandés
la seva ombra es projectara sobre aquest. Els habitants bidimensionals veuran, per tant,
com apareix un cercle al seu univers. Si en comptes d’'una esfera fem el mateix experiment
amb un cub translicid, el resultat sera una mica més complex: per als planilandesos haura
aparegut un quadrat, a l'interior del qual se n’hi trobara un altre amb els vértexs units amb
el gran tal com es mostra en la figura de sota. Amb una projeccié es perd bona part
d'informacié de la figura original pero ajudats amb altres métodes permet fer-nos-en una
bona idea.

1.17: A la esquerra veiem com la projecci6 bidimensional de I'esfera és un cercle. A la imatge de la
dreta podem observar una de les diverses projeccions que pot tenir un cub. Si aquest gira 0 es mou, la
imatge projectada canviara.

e) Possibilitat de veure les seccions d’objectes de dimensions superiors

Una altra de les técniques que podem emprar per estudiar figures de dimensi6 superior és
la de la seccié. Considerem un objecte de 3 dimensions que travessa I'univers planilandes.
Els sers bidimensionals que viuen en aquest veuran una successi® de figures
bidimensionals que canvien al llarg del temps. Aquestes figures son les seccions de
I'objecte tridimensional mentre esta traspassat el seu univers.

De la mateixa manera, si un objecte de 4 dimensions travessa el nostre espai de 3, podrem
observar una successié de figures tridimensionals que canvien de forma al llarg del temps.
La tecnica del seccionament és complexa i ens hi referirem posteriorment en I'estudi de
dues de les figures quadridimensionals més significatives: I'hipercub i la hiperesfera.

g) Rotaci6 d’objectes de n dimensions en espais de dimensié (n+1)
Tornem a Planilandia i ens fixem ara en dos dels quadrats que alli viuen. Es tracta de dos
quadrats (A i B) de caracteristiques idéntiques perd que difereixen en el fet que un és la

imatge mirallada de I'altre. Es a dir que mentre un d’ells té la boca i I'ull a la dreta, l'altre els
té a I'esquerra.

7o }

1.18
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A continuaci6, nosaltres, des del nostre espai tridimensional, agafem el quadrat A i
I'aixequem amunt, traient-lo fora del seu univers bidimensional, li donem la volta i el tornem
a deixar dins de Planilandia. El quadrat A s’haura convertit en la seva imatge mirallada i A i
B esdevindran completament idéntics.

[PHES R
v e

1.19: El quadrat A dona una 1.20: El quadrat A i el quadrat B sén
volta a través de I'espai 3D. idéntics ja que A s’ha transformat en
la seva imatge mirallada.

Fet aquest experiment ja podem deduir qué passaria si foéssim girats en [l'espai
quadridimensional: esdevindriem la nostra imatge mirallada. Totes les nostres
caracteristiques fisiques que trobem a la meitat dreta del nostre cos passarien a trobar-se
just al mateix lloc pero al costat esquerre i a linrevés. Aquest tipus de canvi només és
possible si rotem en una dimensié superior.
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1.5. Caracteristiques matematiques de I’espai 4D

1.5.1. SISTEMA DE COORDENADES

Com ja hem dit en el primer apartat, en I'espai de 4 dimensions és possible tragar quatre
linies perpendiculars entre elles, les quals representen els quatre graus de llibertat que
existeixen. Partint del punt en que es creuen les linies (origen), graduarem aquestes per tal
d’aconseguir quatre eixos de coordenades com aquests:

y
L'eix x i I'eix y corresponen a la primera i a la
segona dimensié i mitjangant aquests podem z
determinar un punt en I'espai bidimensional.
Mitjancant un tercer eix z, que s’estén per la 1
tercera dimensi®6 som capagos de situar w
qualsevol punt en el nostre espai tridimensional. ]
Cal considerar, pero, que la imatge de la dreta
€s una projeccié sobre paper, per la qual cosa
ens veiem obligats a dibuixar el tercer eix
esbiaixat en perspectiva simbolitzant que
s’estendria per la tercera dimensio.
El quart eix, que hem anomenat w, seria el que
s'estendria cap a la quarta. En aquest cas també 1
hem de dibuixar-lo en perspectiva doncs el paper
té dues dimensions i per representar aquest 1.21
sistema de coordenades farien falta quatre graus de llibertat.
Tal com ja hem introduit préviament, per situar un punt en un espai de 4 dimensions cal
donar 4 coordenades; una per cada una de les direccions en les que es pot moure. En
primer lloc s’expressa la que correspon a I'eix x (dreta-esquerra), a continuacio la de I'eix y
(dalt-baix), la de I'eix z (davant-darrere) i finalment la de I'eix w (ana-kata).

(x,y,z,w)

1.5.2. GENERALITZACIO DE LA FORMULA DE LA DISTANCIA

En la geometria analitica, una de les férmules més emprades i més fonamentals és la que
s'usa per calcular la distancia entre dos punts donats. Aquesta sera emprada posteriorment
al llarg del treball i és per aixo que la presentem a
continuacio. Comencem amb un espai
bidimensional:

¥

(cd) Volem calcular la distancia d que hi ha entre el punt
(a,b) i el punt (c,d). Si dibuixem un triangle
rectangle tal com s'indica a la figura, veiem com

db aquest estara format per dos catets de longitud (d-
b) i (c-a) i la seva hipotenusa sera d. Aplicant el
teorema de Pitagores en aquest triangle obtenim

; I'equacié seguent:

(8.5) v —

1.22
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d* =(c—a) +(d-b)’
Aillem la d i aconseguim una féormula que ens permet calcular les distancies entre punts

situats en el pla:
d=\(c—a) +(d-b)’

En general:

— Distancia entre (x4,y1) i (X2,Y2):

d=\(x-x) +(3-1)

Avancem i procedim a cercar una férmula per calcular distancies en espais de 3
dimensions. En aquesta ocasi6 desitgem saber la distancia entre el punt (a,b,c) i el (d,e,f).

Ho farem per parts i en primer lloc buscarem el punt que, estant per sota del (d,e,f), tingui la
mateixa altura que el (a,b,c). Aquest sera el (d,b,f). Aixi aconseguim dos punts que es
troben a la mateixa algada (al mateix pla) i, per tant, podem emprar la férmula de la
distancia per espais de dues dimensions, tot obviant la segona coordenada que és comuna
en ambdos punts.

Distancia (d,) entre (a,c) i (d,f):

d, :\/(xl ‘xz)2 +(y1 _yz)z
d = \(a=dY +(c-f)

Un cop calculat d podem aplicar el teorema de Pitagores amb el triangle restant (ombrejat
de color taronja) per trobar la distancia d:

d*=d’+(b-e)’

& =(\(a=dy +(e—ry ) +(b—e)
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d*=(a-d) +(c-f) +(b-e)’

d=\(a-d) +(b-e) +(c— )’

Expressat de manera general:

— Distancia entre (x4,y1,21) i (X2,Y2,22):

d=\/(xl —xz)z +(y1 _yz)z +(Zl _ZZ)2

Arribats a aquest punt podem extrapolar com sera la formula de la distancia per dos punts
situats en un espai de quatre dimensions. Tenint en compte que la quarta dimensio és
perpendicular a les altres tres, hauriem de repetir el procés anterior afegint-hi un pas més,
amb la qual cosa aconseguiriem:

— Distancia entre (x4,y1,z1,W;) i (X2,Y2,Z2,W5):

d=\/(xl —xz)2 +(y. —yz)2 +(Zl _22)2 +(Wl _W2)2
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2.1. Introduccié al concepte de quadrat, cub i hipercub

Els conceptes de quadrat, cub i hipercub sorgeixen d’una procés geométric molt
simple. Comencem amb un punt, que no té cap dimensié. Si aquest el movem en una
determinada direccié aconseguim un segment unidimensional, limitat per dos punts.
Movent aquest perpendicularment a ell mateix generem una figura plana de dues
dimensions: el quadrat; el qual esta limitat per 4 punts. Si aquest pla el desplacem
perpendicularment a ell mateix obtindrem una figura sélida tridimensional anomenada
cub. Arribats a aquest punt, podem repetir el procés que portem fent fins ara i
desplacar novament el cub per generar una altra figura. Aquest desplacament el
durem a terme en una direccié perpendicular a les 3 ja utilitzades préviament, per tant
sera cap a la quarta dimensi6. La figura que obtindrem tindra 4 dimensions i
lanomenarem hipercub. En determinats contextos utilitzen el terme tesseract per
referir-se a un cub de 4 dimensions.

Com succeeix amb totes les figures quadridimensionals, ens és impossible veure
I'hipercub completament i els Unics métodes que podem utilitzar per estudiar la seva
geometria sén mitjangant les seves projeccions i seccions. En el cas de I’hipercub,
existeixen tres models tridimensionals d’aquest, als quals ens hi referirem de manera
separada.

2.2. Models tridimensionals d’hipercubs

2.2.1. MODEL EXTRUSIONAT

Aquest és el model més facil d’explicar perd també el més complex d’interpretar degut
a la gran quantitat de linies que s’entrecreuen. Per a obtenir-lo ens referirem altre cop
a la série que hem explicat en I'apartat anterior. Com ja s’ha dit, si movem un punt
obtenim un segment. Si desplacem aquest segment perpendicularment a si mateix
obtenim un quadrat. Si repetim el procés amb el quadrat obtindrem un cub i finalment
si desplacem el cub cap a la quarta dimensi6 (direccié “ana” o “‘kata”) obtindrem una
figura que anomenarem hipercub.

% >2.1. Procés de formacio de ’hipercub

/
L ] —e) \
7N
punt linia quadrat cub hipercub

(0D) (1D) (2D) (3D) (4D)
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En les representacions grafiques anteriors topem un altre cop amb el problema de
dibuixar figures de dimensions superiors sobre el paper. Efectivament, tot i que en
teoria totes les arestes d’'un hipercub haurien de ser perpendiculars entre elles, el fet
de dibuixar el model sobre un suport bidimensional ens obliga a utilitzar la perspectiva i
a esbiaixar aquelles arestes que s’estenen cap a la tercera i, dbviament, també cap a
la quarta dimensio.

2.2.2. MODEL DE PROJECCIO CENTRAL

Aquest model no resulta ser tan intuitiu com el primer i per tant ens ajudarem d’unes
captures de video per explicar-lo.

% >2.2. Projeccio central de I’hipercub

A la imatge 1 podem observar com una
font de llum projecta la silueta d’'un cub
translucid sobre una superficie de dues
dimensions. A la captura 2 observem el
resultat d’aquesta projeccio bidimensional
del cub 3D.

Feta aquesta observacié podem raonar per analogia i imaginar que un hipercub de 4
dimensions és il-luminat per una font de llum i la seva ombra és projectada en el nostre
espai tridimensional. En el cas del cub, la seva projeccio en una dimensié menys son
dos quadrats conceéntrics un dins l'altre i els vértexs dels quals estan units per arestes.
De manera analoga podem dir que si un hipercub 4D és projectat en el nostre espai
3D el resultat seran dos cubs concéntrics, situats un dins l'altre i amb els
corresponents vertexs units.

\ ’ Iy /
~ i\/'//’ i
/ f/{\ : \\/\
Vista frontal del model de Vista en perspectiva del mateix hipercub.
projeccié central d’'un hipercub. Distingim un cub petit situat dins un altre de

gran amb els corresponents vértexs units.
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Aquest model també comporta problemes geomeétrics en el moment de construir-lo i
més encara quan cal representar-lo sobre el paper. Les seves cares, que tedricament
haurien de ser cubiques, han de quedar deformades per tal d’encaixar en un espai de
3 dimensions.

2.2.3. MODEL D’HIPERCUB DESPLEGAT

Una tercera manera d'estudiar una figura quadridimensional com [Ihipercub és
estudiant-lo desplegat. Un cub tridimensional el podem desmuntar i presentar-lo com
una figura plana de dues dimensions formada per 6 peces quadrades (una per cada
cara del cub original). De la mateixa manera, podem desplegar un hipercub 4D amb la
qual cosa aconseguirem una figura tridimensional constituida per 8 cubs 3D (un per
cada una de les seves “cares” cubiques).

Un ser bidimensional de Planilandia podra veure el cub desplegat perd6 no podra
observar-lo un cop muntat. En comptes d’aixo6 si que podra veure quines cares haurien
d’anar unides amb quines altres tal com es mostra a continuacio:

é >2.3. Muntatge del cub

5

El cub 3D desmuntat amb els Procés a seguir per muntar el cub a I'espai 3D. Un planilandés
nombres que indiquen quines nomeés podria veure la ombra del cub mentre es munta, tal com es
cares s’han d’unir per muntar-lo. pot observar a la part inferior de les seqiiéncies.

% >2.4. Muntatge de I’hipercub

1 2 3
1 2
‘ - —
1
3 a |8
-
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Nosaltres no podem veure I'hipercub muntat perd de la mateixa manera que un
planilandes pot veure el cub abans de muntar-lo, si que podem apreciar el conjunt de
cubs tridimensionals que el conformen abans que aquest sigui muntat cap a la quarta
dimensi6. La imatge superior esquerra ens mostra parcialment com s’haurien d’adherir
les cares per muntar el cub en un espai quadridimensional.

D'altra banda, mentre estem muntant el cub tridimensional, si que podem projectar
'ombra d’aquest en un espai 2D tal com podem observar a la part inferior de les
sequencies del primer video (video >2.3.). De manera analoga, podem projectar sobre
un espai tridimensional 'ombra d’un hipercub mentre aquest és muntat. Aquest procés
és el que podem observar a les captures de la part superior dreta (pertanyents al video
>2.4).

2.3. Caracteristiques de I’hipercub

2.3.1. CARACTERISTIQUES GEOMETRIQUES

Ara que ja hem descrit els tres models tridimensionals d’hipercub podem procedir a
estudiar-los. Com que els tres models anteriors representen la mateixa figura, hem de
preveure que els 3 tindran les mateixes caracteristiques geométriques.

Centrem-nos primer en el model extrusionat.

— Tenint en compte que aquest model d’hipercub I'hem obtingut
movent un cub cap a la quarta dimensid, tindra el doble de vértexs 3
que un cub 3D. Per tant té 16 vértexs.

— Fent la mateixa consideraci6 tindra les arestes corresponents a
dos cubs. No obstant, hem de tenir en compte que els vértexs dels 7
dos cubs estan units. Si cada cub té 12 arestes i hi ha 8 vértexs de
cada cub per unir conclourem que té 32 arestes.

— Pel que fa al nombre de cares, els dos cubs que formen I'hipercub en tenen 6 cada
un. No obstant, a l'arrossegar el cub cap a la quarta dimensio, cada una de les 12
arestes d’aquest esdevindra una cara quadrada, de manera que en total I'hipercub
tindra 24 cares.

— Per comptar el nombre de cubs cal tenir en compte el dos cubs limitants que
constitueixen I'hipercub . A més cal considerar que en el procés d’arrossegar el cub,
cada una de les seves 6 cares planes ha esdevingut un cub 3D. Sumant-los podem
determinar que I'hipercub esta format per 8 cubs.
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—Per dltim només falta dir que esta format per 1 hipercub.

Ara que ja coneixem les caracteristiques de I'hipercub podem estudiar el model de
projeccio central per intentar detectar les mateixes caracteristiques:

— Té 16 vértexs (8 del cub gran i 8 del cub petit).

— Té 32 arestes (12 de cada cub i 8 per unir els vértexs dels dos
cubs).

— Té 24 cares (6 del cub gran, 6 del cub petit i 12 de laterals en
forma trapezoidal).

— Té 8 cubs tal com podem veure a continuacié (el cub gran de
fora, el petit de dins i els 6 laterals deformats).

il g )=

— Esta format per 1 hipercub 4D.

e ol

2.3.2. DESCRIPCIO MITJANCANT COORDENADES

Si estudiem les coordenades que corresponen als vértexs d’un hipercub de costat 1
podrem fer observacions interessants. Comencem, perd, amb el cas del cub 3D.

Si dibuixem un cub de costat 1 i retolem les coordenades que corresponen a cada un
dels vértexs obtindrem el segient:

(011) (111

(001) Si ens hi fixem podem observar com les agrupacions de 3
4 (101 nombres que descriuen cada un dels vertexs son el conjunt de
(010) totes les variacions amb repetici6 que podem fer amb dos
(110)  elements (0 i 1) agafats de 3 en 3.
(000) (100)

Si sumem els nombres que apareixen a les coordenades dels
diferents vértexs obtindrem valors compresos entre 0 i 3. Aquell P
vertex en el qual la suma hagi donat 3 i aquell en el que hagi .
donat O seran vertexs oposats en el cub (extrems de la diagonal
verda). De la mateixa manera, si unim els vértexs en els que la
suma hagi donat 1 i aquells en els que hagi donat 2 obtindrem
dos triangles (ombrejats en vermell). :
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Fet aixd, repetim el procés perd ara ho fem treballant amb un cub de 4 dimensions.
Com és logic, en aquest cas necessitarem 4 coordenades per descriure la posici6 dels
seus vertexs amb la qual cosa obtindrem:

1111

(0111)

(011 (1011)
(010m (1101)

(0007) (1001)
(0110) (o

(0070) (} 10)
/ *3 \a109) (1100)

(0000) X4 (1000)

Un cop retolades les coordenades podem veure com les agrupacions de 4 nombres
que constitueixen aquestes soén el conjunt de variacions amb repeticié que podem fer
amb 2 elements agafats de 4 en 4. Si fem com abans i sumem els nombres de cada
coordenada obtindrem valors compresos entre 0 i 4. El vértex on la suma ha donat 4 i
aquell en que ha donat 0 tornen a ser escaires oposats (diagonal verda de la figura de
la dreta). Si unim aquells punts en els quals la suma ha donat 1 i aquells en els que ha
donat 3 obtindrem 2 tetraedres (ombrejats en vermell). Finalment, unint els punts on el
resultat ha estat 2 aconseguirem un octaedre (en blau).

Es important remarcar I'aparicié d’aquestes figures tridimensionals dins I'hipercub
perque quan I'estudiem mitjangant seccions ens tornaran a apareixer.

2.3.3. DESCRIPCIO D’ALTRES MAGNITUDS BASIQUES

2.3.3.1. Volum:

Una de les magnituds més facils de calcular per un cub de quatre dimensions és el seu
volum. Comencem amb el cas més basic. En una dimensi6, diem que un segment té
longitud m si aquest pot ser cobert per m segments de longitud la unitat. En el cas de
pla, en un quadrat de costat m hi podrem fer encaixar exactament m? quadrats unitaris
(és a dir, que tinguin costat 1). Si seguim amb un cub de costat m, ens faran falta m®
cubs unitaris per omplir-lo completament. Continuant amb aquest procés ens
adonarem que per omplir un hipercub el costat del qual sigui m, ens faran falta just m*
hipercubs unitaris. Aixi doncs queda clar que I'hipervolum d’'un hipercub 4D es
calculara elevant a la quarta la longitud del seu costat:

_ 4
V,=c
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On:
V4= volum de I'hipercub en unitats d’hipervolum
c= costat de I'hipercub

No ens és complex generalitzar aquest procés. Per a qualsevol n-cub (sent n un valor
enter i positiu), el seu n-volum el calcularem segons:

V,=c"
On:
V,= volum de I'n-cub en unitats de n-volum
c= costat de I'n-cub

2.3.3.2. Diagonals:

Un altre element que podem estudiar d’un cub i, per tant, també de I'hipercub soén les
seves diagonals. Un cub 3D té dos tipus de diagonals: les que podem tragar unint els
vertexs oposats d’una de les seves cares i aquelles que aconseguim si unim vértexs
oposats de cares oposades, les quals anomenarem diagonals grans. Un hipercub de 4
dimensions té més tipus de diagonals perd ara ens centrarem en la gran i intentarem
cercar una férmula per calcular la seva longitud. Comencem amb un quadrat
bidimensional de costat c. La seva diagonal (d) la calcularem aplicant el teorema de
Pitagores i valdra:

d*=c*+ct; d=N+c ; d=v2* | d=c\2

Passem ara al cas tridimensional. Per trobar la diagonal gran primer caldra trobar la
diagonal d’una de les seves cares. Si el cub segueix tenint costat ¢ podem utilitzar la
diagonal trobada a les linies anteriors i aplicar novament
Pitagores, tenint en compte que un catet sera la diagonal
petita, l'altre valdra c i la hipotenusa sera la diagonal gran.
Per tant:

& =dp,+ct d=d,+ 5 d=[(c2) +¢

petita

d=~\N2c*+c* ; d=3 :|d=c\3

diagonal

Shorter

Un cop calculada la diagonal gran d’'un cub 3D ja podem comencar a entreveure un
patré forga clar. No obstant repetim el procés un altre cop. Tot i que I'hipercub tingui 4
dimensions , totes les arestes sén perpendiculars entre elles i formen angle recte la
qual cosa ens garanteix que podem utilitzar el teorema de Pitagores. Tenint en compte
que un catet sera la diagonal gran d’'un cub 3D, l'altre valdra ¢ i la hipotenusa sera la
diagonal gran de 'hipercub, podem escriure:

& =dyy+c’ s d=\dlp,+¢ 5 d=\(c\B) +c* ;. d=3+e ; d=vac

d:cﬁ; d=2c
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De manera que un hipercub de costat c tindra una diagonal gran que valdra 2c. Si ens
hi fixem podrem observar que és un procés acumulatiu i que per calcular una diagonal
d’'un n-cub cal haver calculat préviament la corresponent a I'(n-1)-cub. Al calcular una
nova diagonal per un cub d'una dimensi6é superior tornem a aplicar el teorema de
Pitagores amb la qual cosa sempre queda dins I'arrel n-c®. La c? la traiem fora de I'arrel
i per tant podem concloure que:

d=c\n

On:

d= longitud de la diagonal gran d’'un n-cub
c= costat del cub

n= dimensié del cub

2.3.3.3. Variacié de les magnituds de I'hipercub:
Per ultim podem determinar com variara la superficie de les seves cares, el volum dels

“n

seus cubs i I'hipervolum de I'hipercub quan el seu costat “c” es vegi incrementat en un
factor “a”.

[ ]

— Si el seu costat inicial era “c” i el multipliquem per “a”, aquest augmentara en un

factor “a”.

— Considerem ara les seves cares planes. Aquestes inicialment tenien una superficie
corresponent a “c””. Si els seus costats esdevenen “ac’, la superficie de les seves
cares sera (ac)’. Fet el quocient:

La qual cosa significa que la superficie de les cares planes d’un hipercub augmentara
en un factor “a?.

—Fixem-nos en els cubs que formen I'hipercub. Inicialment el volum d’aquests era “c”.

Si ara els costats esdevenen ac, el volum dels cubs sera (ac)®.

Després de multiplicar per als costats, el volum dels cubs que constitueixen I'hipercub
es veura multiplicat per “a®

— Per Ultim fem atencié al qué succeeix amb el volum de I'hipercub, després de
multiplicar els costats per a. El volum inicial era ¢*. Si ara els costats valen ac, el volum
de I'hipercub esdevindra (ac)*.

De manera que I'hipervolum de I'hipercub prendra un valor “a* vegades més gran que
I'inicial.
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2.4. Aplicacié geomeétrica del teorema dels binomis

Quan ens trobem amb un binomi elevat a una determinada poténcia podem expandir-
lo per tenir-lo com una suma de diferents productes. Podem fer una interpretacio
geometrica d’aquest procés mitjangant cubs de diferents dimensions. Tenint en compte
que p+g=m, considerem el binomi seglent:

m =(p+q)

La interpretaci6 geométrica d’aquest seria un quadrat de
costat m. Fixem-nos en el qué succeeix quan expandim el ,
binomi (emprant els coeficients del triangle de Pascal):

/

|
|
|

(p+q) =p*+2pg+q’

La qual cosa vol dir que si dividim el costat del quadrat (m) en dues parts p i q, el
quadrat inicial passa a ser un conjunt de figures entre les quals hi ha un quadrat de
costat p, dos rectangles de costats p i q i un ultim quadrat de costat q. La suma de les
arees de tots aquests és I'area del quadrat inicial de costat “m”.

r Pq

P4 q°

Establim novament la igualtat d’abans p+q=m pero ara considerem el binomi elevat a

exponent 3: S
o (p +q)3 :&\/\ =

~

/

=

La interpretacié geométrica d’aquest passa a ser
ara un cub tridimensional de costat m dividit en
dues parts: piq.

Si fem com abans i expandim aquest binomi
obtindrem el seguent:

3
(p+q) =p’+3p°q+3pq* +¢°

De manera que el cub gran que teniem al comengament queda dividit en un cub petit
de costat p, un altre de costat q, 3 prismes de base quadrada p’ialcadaqi3 prismes
més de base quadrada g° i algada p:
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La finalitat d’'aquest procés és veure que un binomi com els anteriors elevat a la quarta
poteéncia posseeix també una interpretacié geomeétrica. Si tenim en compte aquesta
expressio:

m'=(p+q)’

El significat d’aquesta és un hipercub quadridimensional de costat m=(p+q). Si
expandim el binomi obtindrem:

(p+q)' =p* +4p’q+6p’¢* +4pg’ + '

De manera que I'hipercub inicial, si dividim els seus costats en dues parts p i q, passa
a ser un conjunt de peces quadridimensionals. Estaria format per un hipercub petit de
costat p, un altre hipercub de costat g, 4 hiperprismes de base cubica p’ i alcada q, 4
hiperprismes més de base cubica q° i algcada p i finalment 6 nous objectes
quadridimensionals que serien hiperprismes en els quals cada vértexs hi confluirien
dues arestes de llargada p i dues de llargada q.

Amb aquest exemple podem veure com és possible fer la interpretacié geomeétrica d’un
binomi elevat a una poténcia tot i que aquest no es pugui construir materialment en el
nostre espai tridimensional.

2.5. Seccionament de I’hipercub

Una de les operacions que podem fer amb I'hipercub i que més informacié ens
proporciona sobre la geometria d’aquest és el seu seccionament. Si fem passar un cub
3D a través de l'univers de Planilandia, els seus habitants 2D podran observar una
successié de formes bidimensionals que apareixen sobtadament i canvien al llarg del
temps. Aquestes seran les seccions bidimensionals del cub. De manera analoga
podem imaginar quines formes tridimensionals (seccions) apareixerien si un hipercub
4D travessés el nostre espai tridimensional.

Comencgarem estudiant les seccions planes d’un cub i després procedirem a deduir
com serien les tridimensionals que correspondrien a un hipercub.

2.5.1. SECCIO DEL cuB

Alhora de seccionar un cub tenim diverses possibilitats. En concret el podem seccionar
de tres maneres: comengant per una de les seves cares planes, comengant per una
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aresta o bé comencant per un dels seus vertexs. Estudiarem els tres casos
separadament i ens ajudarem de material audiovisual per aclarir els processos.

2.5.1.1. Comencant per una cara (2D)

Si fem que un cub de costat “c” travessi un espai bidimensional comencant per una de
les seves 6 cares observarem com en aquest hi apareix un quadrat de costat “c”
durant uns instants. Quan el cub acabi de travessar completament, el quadrat
desapareixera, tal com podem veure en les captures seguents.

% >2.5. Secci6 del cub comengant per una cara

Cada captura esta dividida en
dues parts: la de I'esquerra mostra
la situacié en perspectiva mentre
que la de la dreta ens dona una
visi6 en planta, permetent-nos
observar el procés des de dalt.
Mentre el cub travessa I'espai 2D,
la Unica seccié6 que apareix és la
de un quadrat (en blau) que dura
uns quants instants fins que
desapareix un cop el cub ha
travessat del tot.

2.5.1.2. Comencant per una aresta (1D)

Si ara fem que el cub travessi I'espai bidimensional comencant per una de les seves
arestes obtindrem unes seccions que canviaran al llarg del temps. Vegem la sequéncia
de captures:

% >2.6. Seccid del cub comengant per una aresta

Observem com el primer contacte que té I'aresta amb I'espai 2D fa que en aquest
aparegui una linia (fig. 2). A mesura que el cub es va endinsant, aquesta linia passa a
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esdevenir un rectangle amb dos costats paral-lels de longitud fixa (la mida dels quals
val el costat del cub “c”) i dos altres costats que van creixent. Aquests assoleixen la
longitud maxima just quan el cub és seccionat per la meitat en diagonal. En aquest
instant, la longitud d’aquests costats és la mateixa que la de la diagonal d’'una de les
cares del cub (cV2) mentre que, com ja hem dit, els altres dos mantenen el tamany
inicial corresponent a “c”. A partir d’aquest punt el procés es desfara; els costats de
longitud variable s’aniran escurgant a mesura que el cub surti (fig. 5) fins que la seccié
esdevingui novament una linia i desaparegui (fig. 6).

2.5.1.3. Comencant per un vértex (0D)

Aquesta és la secci6 més complexa d'imaginar i en ella apareixen diverses figures.
Ajudem-nos també d’algunes captures:

% >2.7. Seccio del cub comencgant per un vértex

Quan el cub comenga a tocar I'espai 2D apareix un punt en aquest que de seguida
esdevé un triangle equilater (fig. 2). A mesura que el cub s’endinsa la seccié triangular
va creixent. Quan una quarta part del cub ja ha travessat, la seccié que obtenim és un
triangle equilater de dimensions maximes, els costats del qual tenen la mateixa mida
que la diagonal d’'una de les cares del cub (cv2). A partir d’aquest instant el triangle es
trunca per les puntes de manera que quan el cub és seccionat exactament per la
meitat, la figura que obtenim és un hexagon regular (fig. 4). El motiu pel qual apareix
aquest poligon regular és que a mig cami, I'espai 2D talla exactament igual cada una
de les 6 cares del cub, de manera que el resultat és una figura amb 6 costats
completament iguals. A partir d’aquest instant el procés té lloc a l'inrevés. L’hexagon
esdevé un altre triangle equilater de costat cv2 (just en el moment en qué % parts del
cub han travessat) que posteriorment anira disminuint de mida (fig. 6) fins acabar en
un punt i desapareixer.
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2.5.2. SECCIO DE L’HIPERCUB

Ara que ja hem descrit els processos de seccié del cub podem procedir a descriure els
que correspondran a la secci6é d’'un hipercub de costat “c’. En primer lloc cal fer una
observacié. Un cub de tres dimensions 'hem pogut seccionar comencant de tres
maneres diferents. Es logic pensar que un hipercub 4D el podrem seccionar de quatre
maneres diferents. Aquestes sén: comencgant per un dels seus cubs, comencgant per
una de les seves cares, comencant per una de les seves arestes i comengant per un
dels seus vértexs.

Les seccions del cub descrites anteriorment ens serviran a I'hora de treballar per
analogia i també utilitzarem petits videos per aclarir els processos.

2.5.2.1. Comencant per un cub (3D)

Abans d'estudiar qué obtenim en seccionar un hipercub comencant per un cub fem
una observacio6. En la seccié del cub, en primera instancia I'hem tallat comengant per
una de les seves cares planes bidimensionals. El cub en si tenia 3 dimensions i quan
I'hem comencant a tallar per una de les seves (n-1)-cares hem obtingut una successio
de quadrats. Si raonem per analogia, quan tallem un hipercub 4D comengant per una
de les seves (n-1)-cares (és a dir 3-cares, sindnim de dir “cub”), obtindrem un resultat
molt semblant pero6 amb una dimensié6 més. Es d’esperar, per tant, que en tallar-lo
obtinguem un seguit de cubs tridimensionals. Vegem algunes captures d’aquest
seccionament:

% >2.8. Secci6 de I’hipercub comengant per un cub

Efectivament, al seccionar un hipercub
comencant per una de les seves (n-1)-cares
(cub), obtindrem un cub, la mida del qual
romandra inalterable al llarg del seccionament i
que tindra costats que valdran “c’. Quan
I'hipercub comenci a tallar I'espai 3D apareixera
el cub, que es mantindra fins desapareixer
sobtadament en el moment en que acabi de
travessar I'hipercub. El cub resultant tindra els
costats iguals als de I'hipercub original.

Els 16 vértexs de I'hipercub es distribuiran de la
manera seguent: en veurem 8 al comencament,
quan aparegui el cub i 8 al final, just abans de
desapareéixer.

2.5.2.2. Comencant per una cara (2D)

Ara seccionem I'hipercub comencgant per una de les seves cares bidimensionals (n-2).
Raonant per analogia, obtindrem un resultat semblant al que hem aconseguit en
seccionar el cub comengant per una de les seves arestes perd amb una dimensié més.
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% >2.9. Seccio de I’hipercub comengant per una cara

Quan I'hipercub entra en
contacte amb l'espai 3D,
apareix en aquest una
seccié que és un quadrat
(fig.1). A mesura que
I'hipercub s’endinsa en
'espai, el quadrat esdevé
un prisma de base quadrada, la mida de la
qual no variara i que tindra costats iguals a “c”.
El prisma augmentara la seva longitud fins el
moment en qué I'espai 3D talli 'hipercub just
per la meitat (fig.3) i el prisma experimenti la
seva longitud maxima. A partir de llavors el
proces es reproduira perd a linrevés: el pris-
ma s’anira fent cada cop més curt fins esdevenir un quadrat pla just abans de
desapareixer.Pel que fa als vertexs de Ihipercub, en aquest tipus de seccid
s'organitzen en 3 grups. Al comengament de la seccié, quan apareix un quadrat 2D,
aquest conté 4 dels seus vertexs. A mig cami, en el moment que el prisma té la seva
longitud maxima trobem 8 vertexs més de I'hipercub i els 4 que falten els hem de
cercar a l'ultima seccié quadrada que observem abans que I'hipercub surti de I'espai
3D i desaparegui.

2.5.2.3. Comencant per una aresta (1D)

Les seccions de I'hipercub ara comengaran per una de les seves arestes, que tenen
dimensié (n-3). Aixi doncs haurem de cercar una relacié analogica amb el procés de
seccié del cub comengant per un dels seus veértexs.

% >2.10. Seccio de I’hipercub comengant per una aresta

Tallant I'hipercub d’aquesta
manera observem com en
primer lloc apareix una linia
unidimensional, la longitud
de la qual val “c” (fig. 1). A
mesura que ['hipercub
penetra dins Il'espai 3D
aquesta esdevé un prisma
de base triangular (fig. 2).
L’altura d’aquest prisma és
constant i també val “c”.
Just quan % de I'hipercub
ha travessat, observem
com el prisma té la base de
grandaria maxima (fig. 3). A
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partir d’'aquest instant el prisma es veu truncat de manera que quan I'hipercub es troba
submergit en I'espai 3D just per la meitat, la seva seccidé és un prisma de base
hexagonal (fig. 4). A continuacié experimentarem el mateix procés a l'inrevés. De la
base hexagonal retornarem a la base triangular de grandaria maxima (quan % de
I'hipercub hagin travessat) i a partir de llavors la base s’anira fent petita fins acabar en
una linia (fig. 6) i desapareixer.

En aquest tipus de secci6 els 16 vértexs de I'hipercub es distribuiran en 4 grups: 2 a la
linia que apareix al comencament, 6 al primer prisma de base triangular, 6 al segon
prisma de base triangular i 2 més a I'iltima linia que observem.

Si ens hi fixem podrem veure com les figures que apareixen mantenen molta similitud
amb les que hem vist que apareixien en la seccié del cub comencant per un vértex
perd amb una dimensié menys.

2.5.2.4. Comencant per un vertex (0D)

L’ultima manera que tenim de tallar un hipercub és fent-ho comencgant per un dels seus
vértexs (de dimensié n-4). En aquest cas, perd, no trobem analogia amb la seccié del
cub en la que basar-nos, doncs aquest no té prou dimensions (el cub no pot ser
seccionat comengant per un element de n-4 dimensions).

% >2.11. Seccioé de I'hipercub comencgant per un vértex

Les seccions comencen
amb un punt, el qual
esdevé un tetraedre (fig.
2). Cada una de les 4
cares que conformen el
tetraedre sorgeix de la
interseccié de l'espai 3D
amb 4 dels cubs que
conformen [I'hipercub. A
mesura que aquest ultim
va travessant I'espai 3D,
la mida del tetraedre va
augmentant. Quan % de
I'hipercub ja ha travessat,
el tetraedre experimenta
la seva mida maxima (fig.
3) i els seus costats valen
cV2 (corresponent a la
llargada de la diagonal
d'una de les seves cares
planes). A partir de
llavors les puntes del
tetraedre esdevenen
truncades de manera que quan 3/8 de I'hipercub han travessat I'espai 3D la seva
seccio és un solid semiregular constituit per 4 triangles equilaters i 4 hexagons
regulars (fig. 4), figura ja coneguda per Arquimedes. Seguim avancant i a I'instant que

1
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Ihipercub ja ha travessat la meitat, la seccié obtinguda és un octaedre regular,
constituit per 8 triangles equilaters com a cares (fig. 5). A mig cami, l'espai
tridimensional talla cada un dels 8 cubs de 'hipercub de manera exactament igual,
donant lloc als 8 triangles equilaters. La longitud dels costats de I'octaedre és cv2. A
partir d’aquest punt repetim el procés a la inversa. Quan 5/8 de I'hipercub han
travessat tornem a trobar el solid semiregular (fig. 6) i quan ja ho han fet % parts topem
altre cop amb el tetraedre de mida maxima i costat cv2 (fig. 7). Aquest segueix fent-se
petit fins esdevenir un punt i desapareixer.

Quant a la distribucié dels vertexs, els trobem repartits en 5 grups: 1 al punt inicial, 4 al
tetraedre de mida maxima, 6 a I'octaedre del mig, 4 al tetraedre de tornada i 1 al punt
final.

2.6. Calcul del nombre de r-cares d’un n-cub

2.6.1. OBTENCIO DE LA FORMULA GENERAL

Un cop estudiat el cub i I'hipercub podem crear una taula en la que apareguin el
nombre de figures de cada dimensié que constitueixen el punt, el segment, el quadrat,
el cub i 'hipercub:

Figura estudiada | nam. vértexs | nim. arestes | num. cares nim. cubs num. hipercubs
punt (OD) 1 0 0 0 0
| segment (1D) 2 1 0 0 0
quadrat (2D) 4 4 1 0 0
cub (3D) 8 12 6 1 0
hipercub (4D) 16 32 24 8 1

Fins ara hem aconseguit aquestes dades parant atenci6 a la geometria de les figures i
comptant quins elements les constituien. No obstant, quan ens referim a cubs de
dimensions superiors, el calcul esdevé complex i en molts casos les projeccions no
ens permeten treballar amb facilitat. Es per aixo que podem intentar buscar una
formula que ens permeti trobar el nombre d'elements de cada dimensio (que
anomenarem r-cares) que té un cub de n dimensions (n-cub).

En primer lloc comencem fixant-nos en el procés emprat per obtenir un cub
tridimensional. Partint d’'un punt, desplacem aquest en una determinada direccié a
I'espai per obtenir un segment, el qual esta limitat per dos punts. El segment obtingut
el desplacem en una direccié perpendicular a la inicial a fi d’obtenir un quadrat pla, el
qual té 4 vertexs. Per Ultim desplacem aquest pla en un tercer sentit perpendicular als
dos anteriors amb la qual cosa obtenim un cub de tres dimensions i que té un total de
8 veértexs.

Notem que cada cop que desplacem una figura en una nova direccid (dimensio), la
figura que obtenim multiplica per dos el nombre de vértexs que tenia la seva
predecessora.
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v

va

punt (0D): linia (1D): quadrat (2D): cub (3D):
1 vértex 2 vertexs 4 vertexs 8 vertexs

Aixi doncs podem deduir una formula simple que ens permetra determinar el nombre
de vertexs d’'un cub de n dimensions. El nombre de vértexs el simbolitzarem amb la

expressio X :
X, =2"

Procedim ara a deduir quina expressié ens permetra calcular el nombre d’arestes d’un
cub de n dimensions. Observem qué succeeix als vértexs de les figures de dalt:

El punt, que té 0 dimensions, no té cap aresta que sorgeixi d’ell. En el segment, de 1
dimensio, de cada vertex sorgeix una aresta. En el cas del quadrat bidimensional
veiem que de cada vértex en sorgeixen dues arestes i en el cas del cub de 3
dimensions, sén 3 el nombre d'arestes que conflueixen en cada vértex. D’aquesta
observacié se’n desprén que el nombre d’arestes que sorgiran d'un dels vértexs d’'un
cub de n dimensions sera n (una aresta per cada una de les dimensions en les que
s'estén el cub). A primera impressié, doncs, podriem caure en I'error de considerar que

el nombre d’arestes (X, ) que tindra un cub de n dimensions sera el nombre de vértexs
multiplicat pel nombre d’arestes que conflueixen a cada un d’aquests:

*X,=X,n

No obstant aixd, quan ens fixem detingudament en les figures de dalt veiem que cada
vertex té dos extrems i, per tant, que una mateixa aresta correspon a dos vertexs. Aixi
doncs, la formula que hem presentat és incorrecta ja que hem comptat cada aresta
dues vegades. Corregim aquest error dividint 'expressié de dalt per dos:

_Xyn
2

X,

Avancem i ens fixem ara en el nombre de cares (X,) del cub. Observem que a cada

aresta hi conflueixen dues cares. A Ihipercub, I'analeg del cub perd en quatre
dimensions, el nombre de cares bidimensionals que van a parar a una mateixa aresta
és de 3. En general podem imaginar que en un cub de n dimensions confluiran en una
mateixa aresta, (n-1) cares planes. Si ens fixem en el cas del cub tridimensional
podem justificar aquesta observacié. Escollim una de les arestes del cub i ens fixem
que hi van a parar dues cares planes. Tenint en compte que estem davant un objecte
de 3 dimensions i que 'aresta en si mateixa ja ocupa una dimensio, les cares planes
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provindran de les dimensions restants; i per tant, en el cas del cub 3D, només n’hi
confluiran dues.
Fem, per tant, una primera conjectura de la férmula:

*X, =X,(n-1)

Per6 tal com ens ha passat en el cas de la formula de les arestes, aquesta formula és
incorrecta. Una cara bidimensional esta limitada per 4 arestes, la qual cosa vol dir que
amb la formula de sobre comptem cada cara 4 vegades. Solucionem el problema
dividint I'expressié per 4:

[ X, (n-1)
’ 4

Cerquem ara una férmula pel nombre de sdlids tridimensionals (X,) d’'un cub n-

dimensional. Evidentment aquesta férmula no tindra cap mena d'utilitat en I'estudi de
cubs de 3 dimensions perd en prendra més a I'hora d’estudiar cubs de dimensions
superiors. Quan estudiem la figura de I'hipercub de 4 dimensions, observem que a
cada una de les seves cares bidimensionals hi conflueixen 2 cubs. Altre cop podem
utilitzar un raonament simple per corroborar aquesta observacié. Tenint en compte que
parlem d'un cub de 4 dimensions i que una cara plana “ocupa” dues dimensions,
nomeés romanen dues direccions (dimensions) de les quals poden provenir les cares
cubiques. Aixi doncs, per un cub de n dimensions, a cada una de les seves cares
planes (2D) hi confluiran n-2 solids ctbics. Proposem una primera férmula:

X =X2~(n—2)

Altre cop errem, ja que hem de tenir en compte que cada cub té 6 cares i que, per tant,
amb la férmula anterior hem comptat cada solid tridimensional 6 vegades. Corregim i
obtenim:

X, (n-2
AR

Arribats a aquest punt recuperem totes les formules obtingudes en el procés deductiu:

Figura estudiada Férmula
Vertexs (0D) X, =2"
Arestes (1D .
(1D) o= Xyn
2
Cares (2D) X, (n-1)
X, = —a
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Solids (3D) v - X(n-2)
37 —6—

Abans de procedir a deduir una férmula general fem el raonament anterior per a
qualsevol cas. Desitgem saber el nombre de cares de r dimensions que hi ha en un
cub de n dimensions. En primer lloc fara falta saber el nombre de cares de (r-1)

dimensions que hi ha en aquell n-cub (X, ). Un cop tenim el nombre de cares de

dimensié una unitat inferior que té I'n-cub estudiat determinem que el nombre de
cares de r-dimensions que confluiran en una de les cares de (r-1) dimensions sera el
nombre total de dimensions que té el cub (n) menys el nombre de dimensions que ja
ocupa cada una de les cares de (r-1) dimensions. Per tant proposem:

*X, =X, {n-(r-1)]

nombre de cares de r dimensions que
conflueixen en cada una de les cares de
(r-1) dimensions. El nombre de r-cares
que conflueixen en una (r-1)-cara és el
nombre total de dimensions del cub (n)
menys el nombre de dimensions ja
ocupades per les (r-1)-cares.

nombre de cares de (r-1)
dimensions que té el cub
estudiat

Caiem en el mateix error d’abans. En cada una de les cares de r dimensions hi
conflueixen més d’'una cara de (r-1) dimensions, la qual cosa vol dir que hem calculat
mes r-cares del compte. El nombre de cares de (r-1) dimensions gue van a parar a una
cara de r dimensions és dues vegades el valor de la dimensi6 de la cara que estudiem,
es a dir, . Amb la férmula de dalt cada r-cara ’'hem comptat 2r vegades de més, per
tant la formula correcta sera:

. Xr_l-[n—(r—l)]

g 2r
¥ - X,,_l-[n—r+l]
! 2r

D’aquesta manera disposem d’una férmula que ens permet calcular el nombre de r-
cares que trobem en un cub de n dimensions. No obstant aixd veiem que la férmula es
troba en funcié de tres variables: n, ri X.;. Desenvolupant la formula podrem fer que
aquesta depengui Unicament de dues variables: nir.

Com ja hem vist, la féormula obtinguda és acumulativa, la qual cosa significa que per
obtenir el nombre de r-cares cal recérrer al resultat obtingut anteriorment en aplicar la

férmula per (r-1), (r-2)... i aixi successivament fins que r=1.
Recuperem les formules d’abans:

e X,=2"
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. Xl:XO-n
2
5 szX‘_'(n__l)
: 4
[ ] X3 =—-—X2(Z_2)

En primer lloc expressarem totes les formules en funcié de X,. Comencem amb la
férmula de X,:

) X;‘”(n-l)
. 4
X, = X, n(n-1)
- 8
Seguim i substituim X, a la formula de Xs:
X0~n-(n—1).(n_2)
x,=—38
’ 6
X - X, n(n—-1)(n-2)
’ 48

De manera que ara tenim 4 férmules, la primera Gnicament en funcié de n i les altres
en funcié de ni Xq:

e X,=2"
. X :Xo-n
2
o X, =Mn—_l)
. 8
. X3=X0~n-(n;;)(n—2)

Arribats a aquest punt fixem-nos d’on provenen els denominadors de les formules de
dalt. En la férmula general que hem trobat a les linies anteriors en el denominador hi
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apareixia I'expressio 2r. En la formula de X, apareix al denominador el nombre 2, que
correspon a la definicié donada per la formula general (2r= 2-1=2).

Parem atencié al cas de X,. Al denominador apareix el nombre 8. Hem de tenir en
compte que aquesta formula 'hem obtingut després de substituir I’X; que ens apareixia
inicialment de manera que quedés només en funcié de X,. Aixi doncs, podem escriure:

8=[2r][2(r-1)]=[22][21]

El factor 21 apareix en el
moment en que substituim X4
per la seva corresponent
férmula de manera que
només quedi en funcié de Xo.

Fem el mateix raonament per la formula de X;. En aquest cas el denominador és 48.
Tenint en compte que en aquesta formula I'’X, que ens apareixia inicialment ha estat
substituit per la formula corresponent (en la que, alhora, X, també ha estat substituit
per la seva férmula tal com ja s’ha explicat) observem que:

48=[2r][2(r-1)][2(~-2)] = [23][22][21]
Feta aquesta observacié6 podem manipular les expressions de la manera segiient:
=2 8=[2r][2(r-1)]=2[r(r-1)]=22[2(2-1)]=2221= 222!
=3 ag=[2r][2(r- D[2(r-2)]=2'[r(r-1)(r-2)]=2"[3(3-1)(3- 2)]=2’321=2%3!
La qual cosa ens permet expressar el denominador d’'una manera diferent. En general
aquest sera:
2"r!

Procedim a expressar els denominadors de les expressions de dalt d’aquesta manera:

o X, =2"
_Xyn
ERET
o X, =M.LI)
- 2221
. X3=X0'n'(n—l)(n—2)

2°31

Fixem-nos ara en el que hi ha al numerador a partir de la formula de X4. Observem
com apareix sempre el terme X,, multiplicant-se a altres valors. A la férmula de X4 Xo
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multiplica a n. En la férmula de X;, veiem com al numerador hi ha Xo-n-(n-1). Pel que fa
a la formula de X;; X, es troba multiplicant a n-(n-1)(n-2). D’aquestes observacions
podem deduir que, en general al numerador hi apareixera:

n(n—l)(n—Z)...[n—(r—l)]
n(n-1)(n-2)..[n—r+1]
Arribats a aquest punt ja disposem de suficient informacié per conjecturar una férmula

general. Recuperant el que haviem dit anteriorment sobre el que apareixia al
denominador concloem en:

X = Xo-n-(n——1)(n—2)m(n_r+l)
I &

Substituim X, per la seva corresponent formula:

_2"n(n-1)(n-2)..(n—r+1)

! 2"r!

X

Agrupem les poténcies de base 2:

X = }’l-(n . 1)(’7 - 2)(}1 —r+ 1)_2n—r

r

r<nm

r!

De manera que ja disposem d’una formula que ens permet calcular el nombre de cares
de r dimensions que té un cub de n dimensions. Evidentment cal indicar que aquesta
formula només sera aplicable quan r sigui més petit o igual al valor de n (ja que un cub
n-dimensionals no té r-cares de dimensio superior a n).

No obstant aixd aquesta formula és dificil de processar automaticament fent Gs d’un
ordinador degut a la série que apareix al numerador i que l'ordinador no sap
interpretar. Aixi, busquem una férmula compacta i faciliment computable.

Al numerador hi apareixera la série segtent: n(n—1)(n-2)...(n—r +1)

Si en lloc d'aquesta série posem I'expressié »n! veiem com no obtenim el mateix
resultat ja que apareixen (n—r)! valors multiplicats al numerador que abans no hi
eren.

Vegem-ho amb un exemple:

Si n=7 i r=5, |la série que apareixera sera la segient: 7-6:5-4-3

I en canvi, si posem al numerador n! apareix: 7-6:5-4-3-2-1

Veiem com s’afegeixen multiplicant els termes 2-1, els quals corresponen a (n—r)!.
No obstant aquest problema el podem resoldre facilment simplement afegint al
denominador (n —r)!, la qual cosa ens eliminara els termes no desitjats que apareixen

al numerador quan posem n!. Finalment obtenim:
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on:

n!2""
ey (n—r)!r!

n és el nombre de dimensions del cub
r és el nombre de dimensions de la figura estudiada del cub

2.6.2. COMPUTACIO DELS RESULTATS

Amb la formula trobada en I'apartat 2.6.1. podem calcular amb certa facilitat el nombre
de r-cares que té un cub de n dimensions. La tasca esdevé rapida i facil d’efectuar si
ens ajudem d'un full de calcul amb el formulari adequat com el que es mostra a

continuacio.

é >2.12. Taula de les r-cares d’un n-cub

dimensioé del n-cub nombre de cares de r dimensions
r=0 r=1 =2 | r=3 | r=4 | r=5 | r=6 | r=7 | r=8 | =9 | =10
0 1 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0
2 4 4 i 0 0 0 0 0 0 0 0
3 8 12 6 1 0 0 0 0 0 0 0
4 16 32 24 8 1 0 0 0 0 0 0
5 32 80 80 40 10 1 0 0 0 0 0
6 64 192| 240, 160 60 12 1 0 0 0 0
7 128 448 672 560 280 84 14 1 0 0 0
8 256 1024] 1792| 1792 1120, 448 112 16 1 0 0
9 512| 2304| 4608| 5376| 4032 2016] 672 144 18 1 0
10 1024 5120 11520 15360| 13440/ 8064 3360, 960/ 180 20 1

A l'esquerra de la taula hi ha el nombre de dimensions que té el cub estudiat i a les
columnes de la seva dreta trobem el nombre de cares de cada dimensié que aquest té.
Com és lagic, un cub de n dimensions només pot estar format per r-cares, la r de les
quals sigui igual o menor a n.
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2.6.3. RELACIO AMB L’EXPANSIO D’UN BINOMI

Feta la deduccié de I'apartat anterior podem procedir a fer una observacié curiosa. En
primer lloc, perd, cal recordar la féormula emprada per a calcular el nombre de
combinacions que es poden fer amb n elements agafats en grups de r elements. Es la
seguent:

- n!

Si parem atencié veurem que en I'expressié trobada per calcular el nombre de r-cares
d’un cub apareix justament aquesta formula de combinatdria. Si substituim obtenim:

nt2"
¥ o
" (n—r)!r!
r<nm
X = C2"

Aquesta observacié ens permetra lligar la nostra férmula amb I'expansié del binomi de
Newton. Vegem un binomi elevat a una determinada poténcia, per exemple:

(a+b)4

Que és equivalent a:
(a+b)(a+b)(a+b)(a+b)

Si volem calcular quin valor té aquesta expressié caldra multiplicar tots els elements
per tots i sumar el valors obtinguts. Per facilitar el procés ho farem d’'una manera
ordenada, agafant un element de cada un dels paréntesis.

Comencem prenent una “a” de cada un d’ells, amb la qual cosa aconseguim:

4
a

Només hi ha una sola manera d’agafar quatre “a”, i és prenent la “a” de cada un dels
paréntesis.
Seguidament prenem tres “a” i una “b” i obtenim aquesta expressio:

a’h

Pero aquest cas és diferent de I'anterior, doncs tenim diverses maneres d’'agafar a i b.
Podem prendre la “b” del primer paréntesis i les “a” de la resta, ho podem fer amb el
segon, amb el tercer i el quart. Per calcular de quantes maneres diferents podem
aconseguir I'expressié anterior hem de calcular el nombre de combinacions que es
poden fer amb 4 elements agafats d’un en un:
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Aixi doncs tenim que hi ha quatre maneres d’aconseguir @’b, la qual cosa implicara
comptar aquesta quatre vegades (multiplicar-la per quatre).

Farem el mateix prenent dues “a” i dues “b” i en aquest cas també tindrem diverses
opcions. Per calcular el nombre de maneres que tenim d’agafar ap’ emprarem la
férmula de les combinacions, amb quatre elements agafats de dos en dos:

g et g
2) 2 21(4-2)

Per tant hi ha 6 maneres diferents d’agafar a’b’.
Procedim a fer el mateix perd ara amb I'expressié a'v’. Apliquem la férmula d’abans,

ara fent grups de tres en tres:
4 ]
PR
3 31(4-3)!

Caldra doncs multiplicar a’5° per 4.

Per ultim prendrem totes les “b” i cap “a”. Obviament només hi ha una manera d’agafar
totes les “b’".

Fets aquests calculs conclourem que:

(a+b)' =1a'd° + 4a°b' + 6a°b> + 4d'b* + 1-a°b*

Aquest procés de combinatoria és llarg de fer i esta sintetitzat en el triangle de Pascal
en el que apareixen els nombres combinatoris. A continuacié presentem les cinc
primeres files:
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Un cop calculats aquests nombres obtenim un triangle com el segient:

1 1 1

L uY
1 \*/\3*‘/ 1
AR

4 6 4

1

1

Els coeficients, a més de poder ser calculats mitjiancant la combinatoria, els podem
obtenir rapidament sumant els dos nombres de la fila superior i col-locant el resultat
entre mig d’ells a sota.

Arribats a aquest punt, i emprant la féormula trobada anteriorment, calculem el nombre
de cares de 0, 1, 2, 3 i 4 dimensions que tindra un cub de 4 dimensions:

X, =,C2"

r=0 =,C, 27" =12 =16

r=1 =,C2%" =42 =33

r=3

XO
X]

=2 X,=,C,2"=62"=24
X, =,C,2"° =42"'=8
X4

r=4 =,C2" =12"=1

Observem que per calcular el nombre de O-cares (vértexs) multipliquem 1 per 2*. Per
fer-ho amb el nombre de 1-cares (arestes) multipliquem 4 per 2°. Per obtenir el nombre
de 2-cares fem el producte de 6 per 22 per les 3-cares multipliquem 4 per 2 i finalment
per calcular les 4-cares efectuem 1 per 1.

Fixem-nos en que 1, 4, 6, 4, i 1 s6n els nombres que apareixen al triangle de Pascal a
la cinquena fila, i que a continuacié d’aquests hi ha un 2 elevat a un nombre que
descendeix des de 4 fins a 0.

Aixi doncs podem concloure en que una expressio de tipus (2+1)", un cop expandida,
ens calculara el nombre de r-cares que tindra un cub de n dimensions; sent r un valor
compres entre 0 i n. Comprovem-ho amb el cas del cub de 4 dimensions (n=4):

(2+1)' =12°0° + 42710 + 62212 + 42' 1 +12°1* =16+ 32+ 24 +8+1
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Segons I'expansié del binomi el cub de 4 dimensions esta format per 16 vertexs, 32
arestes, 24 cares planes, 8 cubs i un cub de 4 dimensions; resultats que concorden
amb les dades que ja teniem.

Generalitzant podem determinar definitivament que:

Expandint el binomi (2+1)", sent n un nombre enter i positiu, obtindrem el nombre de
cares des de 0 fins a n dimensions que té un cub de n dimensions.

Procedim a calcular algunes expansions i a comprovar que coincideixen amb els
resultats de la taula de l'apartat anterior, els quals estan calculats mitjancant la
férmula:

(2+1)’ =1

2+1) =12+11=2+1

2+1) =122 422411 =4+4+1

2+41)’ =12’ 4322 +32+11=8+12+6+1

2+1)5 =12°+52" +102° +102> +52+11=32+80+80+40+10 +1

(2+1) =12* +42° 4622 +42+11=16+32+24+8+1
(2+1)° =12° +62° +152* +202° +152% +6:2+11 = 64 +192+ 240+ 160 + 60 +12+1

2+1)7 =12"+72°+212° +352* +352° + 2122 + 72+ 11 = 128 + 448 + 672 + 560 + 280 + 84 + 14 + 1
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3.1. Introduccié al concepte de cercle, esfera i hiperesfera

El mot hiperesfera en aquest treball sera utilitzat com a sindnim de “esfera de 4
dimensions”. Per comprendre qué significa parlar d'una esfera de 4 dimensions ens
referirem primer al cas de dues dimensions (circumferéncia) i al cas de tres (esfera).

— Una circumferéncia és una forma geometrica formada pel conjunt de punts d’un pla que
es troben a distancia constant d’'un punt donat anomenat centre. La distancia del centre a
un d’aquests punts s’anomena radi.

Tenint en compte aquesta definicié, podem trobar facilment I'equacié d’una circumferéncia.
En el primer apartat d’aquest treball hem presentat la formula utilitzada per calcular la
distancia entre dos punts en I'espai bidimensional. Si volem que el cercle tingui centre al
punt (a,b) i que el seu radi sigui r només cal que substituim a la férmula i obtindrem:

d=\(x-%) +(-2)
r=\(x-a) +(y-b)’

equacié de la circumferéncia: r? = (x - a)2 + (y - b)2

— Una esfera, en canvi, és un solid limitat per una superficie tots els punts de la qual
equidisten d'un punt anomenat centre. Per trobar la férmula d’'una esfera utilitzarem la
formula per calcular distancies en I'espai tridimensional presentada també al primer apartat
i segons la qual:

dz\/(xl _xz)2 +(» _yz)2 +(z —22)2

Volem que el centre de I'esfera tingui coordenades (a,b,c) i que el radi d’aquesta valgui r,
de manera que ens queda:

r=\/(x—a)2 +(y—b)2 +(z—c)2

equacio de l'esfera: r?= (x—a)2 +(y—b)2 +(Z—C)2

Ara que ja hem vist per sobre les definicions del cercle (esfera 2D) i de I'esfera 3D podem
comencar a pensar en quines seran les caracteristiques d'una esfera de 4 dimensions o
hiperesfera.

— Una hiperesfera és una figura de 4 dimensions formada per la regié de I'espai 4D que
esta limitada pel conjunt de punts que equidisten a un punt donat o centre.

En realitat el concepte d’esfera i hiperesfera sén molt semblants, I'Gnic que s’ha de tenir en
compte és que en una hiperesfera 4D ens podrem moure en 4 dimensions diferents per
anar a trobar un punt que estigui a distancia r del centre (radi).
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Vegem-ho amb un exemple i intentem primer construir
una esfera de radi 5 cm; la qual cosa vol dir que hem
de marcar tots els punts de l'espai tridimensional a
distancia 5 del centre. Podem moure’'ns 5 cm en
horitzontal i trobarem un punt. També podem avancar
recte 4 cm i ascendir-ne 3 o bé avancar-ne 3 i
ascendir-ne 4 o fins i tot avancar-ne 1 i descendir una

distancia +24 . El nombre de combinacions possible
és infinita i I'esfera estara limitada per tots els punts
que compleixin la condicié d’estar a 5 cm. del centre.

Podem fer aquest mateix procés a I'hora d'imaginar com hauria de ser una hiperesfera,
perd hem de tenir en compte que ara existeixen 4 direccions en les que ens podem dirigir.
En primer lloc, si el radi sé6n 5 cm., seran punts de la hiperesfera tots aquells de I'espai
tridimensional situats a 5 cm del centre. No obstant també ens podem moure en direccié
“ana” i “kata” de manera que ens podem allunyar 3 cm del centre en qualsevol direccio,
girar 90° i moure’ns 4 cm en direccié “ana” per trobar un punt de la hiperesfera. També
podem allunyar-nos 4 cm del centre i llavors descendir 3 cm en direccid “kata” o bé també
podem desplagar-nos directament 5 cm en direccié “ana” o “kata” per trobar punts de la
hiperesfera. Tota aquesta muni6 de punts constituiran la hipersuperficie de la hiperesfera
de radi 5.

Feta aquesta reflexi6 tampoc és complicat trobar I'equacié que ens representi una
hiperesfera. La seva definicié diu que és aquell espai 4D limitat per punts que es troben a
distancia r del centre. Recordem la férmula presentada al primer apartat del treball per
calcular distancies entre punts situats a I'espai quadridimensional:

d=\(x=x) +(n-2) +(z-2) +(n-w,)

La distancia a la que nosaltres desitgem els punts és r i el centre ha d’'estar situat a les
coordenades (a,b,c,d); de manera que la formula per a aquesta hiperesfera sera:

r=\(x-a) +(y=b)’ +(z=c) +(w—d)

equacio de la hiperesfera: r’ = (x = aV)2 + (y = b)2 + (z — c)2 + (w = d)2
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3.2. Caracteristiques de la hiperesfera fent us de I’analogia

La nostra capacitat imaginativa, com sempre passa quan intentem imaginar objectes de
més de 3 dimensions, es queda curta a I'hora de fer-nos una imatge de la hiperesfera. No
obstant si que podem deduir-ne algunes caracteristiques si fem Us altre cop de I'analogia.
Qué passaria si una hiperesfera travessés el nostre espai tridimensional? Com serien les
seves seccions 3D? Per a respondre aquesta pregunta plantegem el cas en una dimensié
inferior: qué succeeix quan una esfera talla un espai 2? Ho podem veure facilment amb
aquestes sequeéncies:

>3.1. Seccio de 'esfera

A mesura que l'esfera toca
I'espai 2D, apareix un punt que
creix i esdevé un cercle. Aquest
segueix augmentant de mida

fins el moment en qué I'esfera

3 4 travessa I'espai 2D just per la
meitat. En aquest punt el radi

‘ . del cercle és el mateix que el

ﬂ n radi de l'esfera 3D. A partir
d’aquell instant el tamany

retrocedeix i el cercle acaba
esdevenint altre cop un punt.
Quan l'esfera ja no toca l'espai
3D el cercle desapareix.

2

Ara que ja hem vist qué passa quan una esfera 3D travessa un espai 2D podem deduir
quines consequéncies tindria que una hiperesfera 4D passés a través del nostre espai de
tres dimensions. Observem aquesta seqiiéncia:

>3.2. Seccio6 de la hiperesfera

La imatge 1 mostra el primer contacte
entre la hiperesfera i I'espai 3D, que és
un punt. A mesura que es va endinsant
en el nostre espai I'esfera va creixent
fins la imatge 3, moment en que la
hiperesfera és seccionada per I'espai
tridimensional just per la meitat. En
4 o aquest instant, el radi de l'esfera que
observem és el mateix que el de la
hiperesfera original. A continuaci6 es
repeteix el procés a la inversa. A
mesura que la hiperesfera surt del
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nostre espai, la seva seccid6 es va fent petita fins acabar en un punt (imatge 6) i
desaparéixer.

Cal destacar que tot i que les seccions augmenten i disminueixen el radi de la hiperesfera
es manté constant. El fet que nosaltres tallem per un punt o per un altre és el que
determina el tamany de la secci6 resultant. Tal com ja hem dit, si desitgem saber el radi
real de la hiperesfera haurem de tallar-la just per la seva meitat. En aquell instant, el radi de
I'esfera resultant sera el mateix que el de la hiperesfera.

Podem fer una altra reflexié interessant. El conjunt de cercles 2D obtinguts en seccionar
una esfera, considerats en conjunt formen una superficie 2D (la superficie de I'esfera).
Analogament, la familia d'esferes 3D obtinguda en la secci6 d'una hiperesfera;
considerades en conjunt; formen una hipersuperficie tridimensional. Per aquest motiu
podem dir que la hipersuperficie d'una hiperesfera és un espai tridimensional corbat cap
una quarta dimensid. Si una persona es trobés situada dins la hipersuperficie tridimensional
d'una hiperesfera ella no en seria conscient doncs la curvatura cap a Iespai
quadridimensional no I'afectaria i seguiria tenint només 3 graus de llibertat. Es el mateix cas
que el d’'una formiga caminant per sobre un globus: només té 2 graus de llibertat i el fet que
la superficie per sobre la qual camina estigui corbada cap una tercera direccié no modifica
el fet que només pugui moure’s en dues direccions diferents.
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3.3. Calcul del volum d’una hiperesfera

A continuacié ens disposem a trobar una formula que ens permeti calcular el volum d'una
hiperesfera en funcié del seu radi. En primer lloc, pero,buscarem la formula per calcular
volums d’esferes tridimensionals i aplicarem un procediment similar per trobar la formula
que ens interessa.

Considerem l'esfera presentada a continuacié. El seu radi és r i en primer lloc cerquem
I'area del cercle dibuixat en vermell.

Vista lateral Vista frontal

Aplicant el teorema de Pitagores podem escriure:

x2+y2=r2

Aillem la y, que és el radi de la circumferéncia vermella i apliquem la formula de I'area d’un
cercle per calcular la seva area:

y= /rz_xz

A=nr’; A=m)’
A=n(r’-x%)

De manera que tenim una expressié que ens calcula I'area d’'un cercle inscrit dins una
circumferéncia de radi r i el centre del qual es troba a distancia x del centre de I'esfera.
Nosaltres busquem una férmula que ens calculi el volum de I'esfera. Aquest volum sera la
‘suma” de totes les arees de totes les circumferéncies que hi ha dins I'esfera. Si situem
'esfera amb el centre a I'origen de coordenades, voldra dir sumar les arees de totes les
seccions des de x= -r fins a x=r. Aquest procés es duu a terme fent la integral de la funcié
area des de rfins —r:
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V= ].ﬂ-(r2 -x%)

Com que l'esfera és simétrica, podem calcular el volum d’una meitat i multiplicar el resultat
per dos amb la qual cosa aconseguirem simplificar la integral. Al mateix temps podem
treure 1, que és una constant, fora de la integral. Procedim a resoldre-la:

V=2 I(rz -x%)
0

37
V=2x r2~x—x—]
3

0

3 33 3
szzz[r3_53-); V=27z(3r—3r—J; =t

V=i7rr
3

D’aquesta manera aconseguim la férmula que ens permet determinar el volum de I'esfera
nomeés en funcié del seu radi.

Ara que ja hem fet el procés per trobar aquesta formula podem procedir a buscar-ne una
que ens serveixi per les hiperesferes de 4 dimensions.
L'equaci6 d’una hiperesfera, incloent-hi el seu interior s’expressa amb una desigualtat:

+y + 22+ W <r?

Situem la hiperesfera de radi “r* amb el centre a I'origen de coordenades , de manera que
talla I'eix x des de x = -r fins a x = r. Per un valor concret de x, la seccié que obtindrem sera
el conjunt de punts (x,y,z,w) amb aquest valor de x. Si la x és una quantitat donada i tenim
en compte que la r és un nombre fix, 'equacié anterior s’ailla de la manera seguent:

YV +z2P 4w <t —x
Efectivament, la seccié obtinguda en donar un determinat valor a x és una esfera, el radi de
la qual és:

2 2

re—x

Aplicant la formula del volum d’'una esfera aconseguirem el volum de les esferes (seccions)
que obtindrem en funcié de la coordenada x:

. 4
—Foérmula del volum de l'esfera: 7 = 57(1‘3

59



iEEt:l_n:ii Od=2 L8 Ousr s odimerissica

= L8 hipear s er s

. 4 5 oY
—Substituint I'expressio que determina el seu radi: V = Eﬂ (\/ ro—x- )

Per aclarir I'explicaci6 utilitzarem la notaci6 7, (r) per referir-nos al volum d’una esfera de
radi r i de n dimensions. Aixi, el volum d'una esfera tridimensional de radi r s’indicaria amb
I'expressio V, (r)=4/3xr’.

Seguint aquesta notacid, I'expressié de dalt s'indicaria de la forma segient:

Vz(m)___%ﬂ(m)

Tal com hem fet en el procés per obtenir la férmula de I'esfera tridimensional raonem dient
que I"hipervolum” de la hiperesfera 4D I'obtindrem “sumant” el volum de totes les seccions
tridimensionals d’aquesta. L'eina que ens permet fer aixo és la integral i ho indiquem aixi:

()= [ 2r( =) e

La hiperesfera; de la mateixa manera que l'esfera, estda formada per dues meitats
idéntiques. Aixo ens permet integrar des de x = 0 fins x = r (obtenim el volum d’un hemisferi
de la hiperesfera) i multiplicar per dos el resultat per aconseguir el volum de la hiperesfera
completa. Al mateix temps traiem fora de la integral les constants d’aquesta manera:

V,(r)= 2?7:_[(\#2 -x’ )3dx
V,(r) =§7[£(m)3dx

Per racionalitzar I'arrel quadrada de dins la integral utilitzem un canvi de variable seguint la
igualtat x = rsin@i que afecta de la manera segiient:

S Nr—x? =P —rsin’ g = \/r2 (l—sin2 6?) = rl=sin’@ = rvcos’ @ = rcosd

. . ) /4
— x=r ; r=rsinf ;sind=1; arcsinl=6 ; HZE

— x=0; 0=rsinf ; sind=0 ; arcsin0=6 ; 6=0
— | per dltim hem de tenir en compte que: dx = rcos 8-d@

Feta la substitucié i els canvis a dalt indicats obtenim la expressié seguent:

V,(r)= g;r fé(r cos@)’rcos 0-d6
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V,(r)= gfr fé r’ cos’rcos6-d6
8 %
V,(r)= 37 '[;Z r*cos* 6:d6

La r és una constant que per tant surt fora de la integral:
V(r)= gﬂr4 J:A cos* 6-do

Per resoldre aquesta integral és necessari recorrer a una formula de reduccié d’integrals,
que s’obté per la técnica d’integracié per parts i segons la qual:

J:% cos" Gap="—" _E% cos”" > 6-d6 (n>2)
n
Emprem aquesta formula un cop:
J;% cos* 9-dg =3 fé cos’ 0-d0
4
Arribats a aquest punt tornem a aplicar la mateixa férmula una altra vegada:
—f/ 9d0——% 7 cos’ 0-d0

Resolem la integral:

[/ cos” - - [Prao =[x - z

Reconstruim la férmula i simplifiquem:

13
V4(r)—§ r® EZ% (r)==nmr'z
H(r):—;—ﬂzr4

Aixi obtenim una expressié que ens permet calcular I'hipervolum (en unitats d’hipervolum)
d’'una hiperesfera en funcié del seu radir.
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3.4. Calcul del volum d’una n-esfera

Ara que ja hem aconseguit trobar la formula per calcular el volum d’hiperesferes de 4
dimensions podem buscar una férmula que ens permeti generalitzar el calcul per a esferes
de qualsevol dimensié. A partir d'esferes de dimensié 4 (Que anomenem hiperesferes)
utilitzarem la notacié n-esfera per referir-nos a esferes la dimensié de les quals és n.

Comencem fent una taula amb les formules que ens permeten calcular els volums
d’'esferes de 1, 2, 3 i 4 dimensions:

1D n(r)=2r o :

2 La disposici6 de les féormules en taules permet
2D Vz(r):ﬂr' observar coincidéncies i deduir-ne patrons logics.
3D K( r)= 4/3 o Aqui _podem veure f_acnlment que el ra_dl sempre

: apareix elevat al mateix exponent que la dimensio de
4D v, (r) =12 ! I'esfera que estudiem.

A continuaci6 introduirem una nova notacié. Anomenarem U, el volum d’'una esfera de n
dimensions i de radi 1; premissa de la qual se’n desprenen dues igualtats ldgiques:

v,()=U,
v, (r) =U,r"
Procedim a calcular el n-volum d’'una esfera de n dimensions i radi 1. Per fer-ho sumarem

el (n-1)-volum de totes les seccions de n-1 dimensions. Aixi doncs integrarem des de x = -1
finsax=1:

Volum d’una esfera de dimensié n-1

iradi 1 —x’

Tenint en compte la igualtat que hem descrit a les linies superiors (V,,(r):Un-r”)
substituim:

v,= [ U, (V1= )I dx

Com que la hiperesfera és simétrica integrarem només des de x=0 fins a x=1 i
multiplicarem per 2 el resultat per obtenir el volum complet. Traiem fora de la integral les

constants i obtenim:
n-l1
u,=2U,, [ (\/1 —x? ) dx
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Per racionalitzar I'arrel quadrada de dins la integral utilitzem un canvi de variable seguint la
igualtat x = »sin@ =siné ; i que afecta de la manera seguent:

S Jl1-x2 = 1-sin8@ = VJcos* O = cosd
— x=r=1;1=sin@; arcsinl =80 ; 0=%
— x=0; 0=sind ; arcsin0=6 ; =0

— | per ultim hem de tenir en compte que: dx = cos8-d6

Feta la substitucié i els canvis a dalt indicats obtenim I'expressi6 segient:
% n-1
U,=2U_, £ (cos®)" cosb-do

U, =2U

n-1

J;% cos"™" B-cos0-do
U,=2U,, L/ cos” 6-d6

Tal com ja s’ha explicat en el cas de la hiperesfera de 4 dimensions, per resoldre aquesta
integral és necessari recérrer a una férmula de reduccié d'integrals, que s’obté per la
técnica d'integracio per parts i segons la qual:

f/z cos” 6-do =""1 JD% cos" > 6-do (n>2)
n

No obstant aix6 ens trobem davant dues situacions possibles. Estem buscant una férmula
general que ens permeti calcular I'n-volum d’una esfera n-dimensional i per tant n pot
prendre qualsevol valor enter i positiu. Aixi doncs el calcul es desenvolupara de manera
diferent si n és un nombre parell o és un nombre imparell, ja que segons la paritat de n la
formula de reducci6 aplicada reiteradament ens portara a exponent 1 o bé 0. Separem els
dos casos:

—Si n és un nombre imparell:

Apliquem la férmula de reduccié d’integrals fins que I'exponent del cosinus esdevingui 1:
(n-1)(n-3)..42

U,=2U
! " n(n-2)..53

j;% cos' 6-d6

Resolem la integral i simplifiquem:
(n - 1)(n - 3)...4-2
n(n - 2)...5'3

U,=2U, sing]2
n n-1 [ ]0
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(n_l)(n—3)...4‘2. . (7
u,=2U,_ n(n—z)--‘s'?’ Sm(;)
(n_l)(n—3)...4'2.l

U,=2U,,
! o n(n—2)...5-3

.(n - 1)(n - 3)...4-2

=2U
Ur " n(n-2)..53

—Si n és un nombre parell:

Apliquem la férmula de reduccié d’integrals fins que 'exponent del cosinus esdevingui 0:

U,= 2-U,,_1~(n “)(n=3)-31 fé cos’ 6-d6
n(n—2)...4'2
U =20 (n-1)(n-3)..31 L%l-dH
n(n-2)..42

Resolem la integral i simplifiquem:

0, -20,

.(n—l)(n—3)...3-1_£

U,=2U
i " n(n-2).42 2

(n-1)(n-3)..317
T n(n-2)..42

Arribats a aquest punt tenim dues formules que ens permeten determinar I'n-volum d’una
esfera de n-dimensions segons si n és un nombre parell o imparell. No obstant aixd, les
formules obtingudes ens determinen I'n-volum d’'n-esferes el radi de les quals és 1 i també

observem que depenen de n i a més, per calcular U, , cal haver calculat U, , primer. Fora

desitjable aconseguir formules que ens donessin U, només en termes de n. A continuacié
es presenten els passos a seguir per obtenir-les. Seguim distingint els dos casos segons la

paritat de n:

—Si n és un nombre imparell:

Recuperem [l'ultima férmula que hem obtingut per a calcular n-volums d’esferes de n

dimensions, sent n un nombre imparell:
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(n=1)(n-3)..42
n(n - 2)...5-3

Un = 2.Un—l

Si n és un nombre imparell, n-1 sera parell. Aixi doncs apliquem la férmula obtinguda
anteriorment per calcular els n-volums quan n és parell de la manera seguent:

.(n - 1)(n —3)...3'1-72'

U,=U
T n(n-2)..42

(n-2)(n-4)..31x
2" (n=1)(n-3)..42

Un—l = U

| substituim a la férmula inicial, d’aquesta manera:

(n=-2)(n-4)..317 (n-1)(n-3)...42
> (n-1)(n-3).42  n(n-2)..53

Un = 2.UI7—

Arribats a aquest punt podem simplificar I'expressié obtinguda tal com es mostra en el pas

seguent:
o 2 (nf2)(nf8) pFr (n /1) (nf3). A2
n (n/l)(n/3)//én(n/2)(n/4);/%

I obtenim una férmula de reduccié per als U, :

U=y 2%

n n-2

Com que n és un nombre imparell podem escriure: n =2k +1

27 2

=L, s Ui = Uy m

n n-2

Apliquem reiteradament la formula de reduccié anterior tal com s'indica a continuacié:

2r
Usirn =Ux m

| .

u, =U, ,——
2k-1 %35

2 ) 2
2k—12k+1

Uppn = 2%-3"
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27 ) 2 ) 27
#5o0k—-3 2k—1 2k +1

2 ) 27 . 2 . 2
*T 2k—52k -3 2k—1 2k +1

Uy =U

UZ/H—] = U

Aixi doncs aplicarem la formula de reduccié de dalt tantes vegades com sigui necessari
fins que arribem a U, :

27 2x ok, 2 27
Uy =U——2

3 5 U 2k—12k+1

Tenint en compte que U, significa el “1-volum” d’'una “1-esfera” de radi 1 (és a dir, la
longitud d’un interval de centre 0 i radi 1) establim que U, =2 . Substituim:

2z 2m k, 27 2z
""" 2k—-12k+1

Arribats a aquest punt i observant I'expressié anterior ja podem plantejar una férmula
general per a qualsevol valor parell i positiu de n:

2/r+l ‘ﬂ'k

o=
(26 +1)(2k-1)...531

—Si n és un nombre parell:

En aquesta ocasié recuperem ['tltima formula que hem obtingut per a calcular n-volums
d’esferes de n dimensions, sent n un nombre parell:

U =U._ .(n —1)(n —3)...3-17:
n(n - 2)...4'2

Si n és un nombre parell, n-1 sera imparell. Aixi doncs apliquem la formula obtinguda abans
per calcular n-volums de n-esferes quan n és un valor imparell:

'(n—l)(n—3)...4'2

U,=2U
’ " n(n-2)..53

oy (n=2)(n-4)..42
Ui =2V, (n—2)(n-4)..53

Seguidament substituim a la férmula inicial:
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(n - 2)(n —4)...4-2 (n - 1)(n - 3)...5-371'
Un =2 ) (n=3)53 n(n=2).42

Simplifiquem I'expressio:

oy /DS FL (0 /)0 f5).
! " (n/l)(n 3)/3’/3/ n(7/—2)(n/4)./4)1

De manera que obtenim una férmula de reduccié per als U :

Com que n és un nombre parell, podem escriure que n =2k

2z
Uy =Uy., E;c_

Apliquem reiteradament la férmula de reduccié anterior:

2
Uy = Usis _k-

| .

U") =) :U7 S R
2k-2 _k42k_2

=i, A, 2
4 ok 2k-2

Zf. 27 ) 2
2k 2k-2 2k-4

U2 k

Uzk =Us6”

Aplicarem la formula de reducci6 de dalt k-1 vegades amb la qual cosa aconseguirem el
resultat segient:

.275 27 27 &275

U?/(_ D
} T2k 2k-2 2k—-4 4
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Tenint en compte que U, significa el “2-volum” d'una “2-esfera” de radi 1 (és a dir, la
superficie d’'un cercle de radi 1); aconseguim que U, =7 :

27 2w 2« Iﬂ!Zﬂ

U, =m=— - e
%" 2k 2k-22k—4

Procedim a simplificar 'expressié obtinguda:

Akl kel
U, =1
= 2k (2k-2)(2k-4)..4

k-l ok
Uy, = (2k)(2k—2)(2k_4)"'22
2Kt gk
Uy = (2k)(2k_2)(2k—4)...22‘2
oo AL o
SN E) B B R e
257t
Uy = ok (k)(k_l)(k—2)...2'1
g 2T
a3
Byt
k!

D’aquesta manera aconseguim una férmula generalitzada per calcular n-volums de n-
esferes, sent n un valor parell.

Aixi doncs, arribats a aquest punt disposem de dues formules que ens permeten calcular
volums d'esferes de n-dimensions i el radi de les quals és 1. Tal com hem vist al principi
d’aquest apartat, si volem calcular volums de n-esferes el radi de les quals és diferent de 1,
nomeés cal afegir multiplicant a ambdues férmules I'expressié r”. Al mateix temps podem
finalitzar el desenvolupament de les formules tornant-les a posar en funcié de n tenint en
compte les igualtats establertes en els passos anteriors. A continuacié mostrem aquesta
ultima simplificacio:
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cas en que n és un valor imparell cas en que n és una valor parell
»)k+l 'ﬂ'k 72_/(
U i = = U, =—
2k +1)(2k-1)...531 g
k. 2k
QkHL ok 2k v (r) _Tr
v, = 2#\")=
2 (1) (2k+1)(2k-1)...531 ‘ k!

Tenint en compte que n=2k+1 substituim: Tenint en compte que n=2k substituim:

| -1 T =r
2n+/2 .”n A 'rn ; (r) o

v,
V()= n(n-2)..53 (72):

Ara ja disposem de dues formules amb les que podem calcular els volums d’esferes de
qualsevol dimensié i de radi variable. L’'objectiu d’aquestes formules és poder computar-les
a fi d’obtenir resultats per valors variables de n. La complexitat de les formules ens obliga a
emprar un programa informatic que ens efectui els calculs i que ens permeti treballar amb
els resultats. La férmula corresponent al cas en que n és parell no comporta cap problema
a I'hora d’introduir-la a l'ordinador. Tanmateix topem amb més dificultats quan volem
introduir la férmula per valors de n imparells, degut a la série que apareix en el
denominador d’aquesta. Aixi doncs, procedim a fer una Gltima manipulacié d’aquesta
formula que ens permeti expressar-la d’'una altra manera més practica per al seu posterior
tractament informatic.

Recuperem la férmula corresponent a valors imparells de n abans de fer I'Gltima
substitucio:

k+1 k _2k+1
2

Vaka (r)= (2k+l)(2k~1).---5'3'1

Fixem-nos en el que significa la série que apareix al denominador:
(2k+1)(2k —1)...9~7-5~3-1

Ja que volem expressar la formula d’'una manera més simplificada posem, al denominador,
I'expressi6 factorial (!) i observem els canvis:

(2k+1)!=(2k+1)(2k)(2k -1)(2k - 2)..987-6:54:321

En emprar la funcié factorial, al denominador apareix, multiplicant a la série inicial, els
valors seglents:
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(2k)(2k-2)..86:42

Ja que estem estudiant el cas en que n és un nombre imparell i segons la igualtat
establerta anteriorment » =2k +1, k sera un nombre parell de manera que podem treure
factor comu 2 de cada un dels elements de la série:

[2(0))[2(k-1)]-[24][23][22][21]
2" (k)(k-1)..4321
2" k!

Aixi doncs tenim que:
(2k +1)1=(2k +1)(2k -1)...97-531-2" k!
I |
|

série inicial

Reconstruim la formula inicial tenint en compte la igualtat anterior:

o+l k. 2k
(2k +1)!

2% k!

VZ/c+l (r) =

Fixem-nos en que hem afegit al denominador 2*-k! dividint per tal de no alterar la série que
hi havia inicialment a la primera formula. Per acabar simplifiquem:

2k+l '71_/( _r2k+l .2/( 'k!

(2k +1)!

Vaen (r) =

D2k 2k
(2k+1)!

V2k+l (I") =

Ja per acabar, i tenint en compte que n =2k, expressem la férmula només en funcié de n:

2,1.7["‘%.,,».(;1—12)!

n!

V.(r)=

D'aquesta manera ja disposem de dues formules compactes i facilment computables per
calcular n-volums de n-esferes de radi variable:
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cas en que n és un valor imparell cas en que n és una valor parell

Ko (n=f)

V. (r)=

n!

3.5. Computacid de resultats

3.5.1. COMPUTACIO DE VALORS ENTERS | POSITIUS

Ara que disposem de dues formules compactes per calcular els n-volums de n-esferes
podem introduir-les en un full de calcul perqué ens computi els resultats

— Taula A

f 35

é >3.3. Taula A

n radi n(r) n-volum v. n-esfera / v. n-cub

1 1,0 2,00000000000000; 1,00000000000
2 1,0 3,14159265358979 0,78539816340
3 1,0 4,18879020478639 0,52359877560
4 1,0 4,93480220054468 0,30842513753
5 1,0 5,26378901391432 0,16449340668|
6| 1,0 5,16771278004997| 0,08074551219
7 1,0 4,72476597033140 0,03691223414|
8| 1,0 4,05871212641677| 0,01585434424]
9 1,0 3,29850890273871 0,00644240020
10 1,0 2,55016403987735 0,00249039457
11 1,0 1,88410387938990 0,00091997260
12 1,0 1,33526276885459 0,00032599189
13 1,0 0,91062875478328 0,00011116074
! 1 1,0 0,59926452932079 0,00003657620
1 1,0 0,38144328082330 0,00001164073
16 1,0 0,23533063035889 0,00000359086
17| 1,0 0,14098110691714] 0,00000107560
18| 1,0 0,08214588661113 0,00000031336|
19 1,0 0,04662160103009 0,00000008892
20 1,0 0,02580689139001 0,00000002461
21 1,0 0,01394915040902 0,00000000665|
22 1,0 0,00737043094571 0,00000000176
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2 1,0 0,00381065638685 0,00000000045
2 1,0 0,00192957430940 0,00000000012,
25 1,0 0,00095772240882 0,00000000003
26 1,0 0,00046630280577| 0,00000000001
27 1,0 0,00022287212472 0,00000000000
28 1.0 0,00010463810492 0,00000000000
29 1,0 0,00004828782274 0,00000000000
30 1,0 0,00002191 535345I 0,00000000000

La primera columna mostra la dimensié de la n-esfera estudiada i la segona ens indica el
radi de la n-esfera. A la tercera columna apareix I'n-volum calculat amb una férmula o I'altra
segons la paritat de n. La quarta columna serveix per fer una observacié curiosa. En
aquesta apareix la proporci6 entre el volum de la n-esfera i la caixa cubica més petita (de
costat 2r) que podria contenir-la:

A40)

2”

Sorprenentment aquesta proporcié s’aproxima a 0 rapidament a mesura que la n
augmenta. Aix6 vol dir que com més gran sigui la n, menys quantitat d’espai del n-cub sera
ocupada per la n-esfera. Podem intentar justificar aquest curiés comportament pensant que
com més gran és el nombre de dimensions, en més direccions diferents es pot expandir la
n-esfera de manera que cada cop ocupa una proporcié menor de I'espai que hi ha dins del
n-cub que la conté.

Si presentem els volums en una grafica veurem el segient:

n-volum de n-esferes

6,00
5,00 //\\
4,00 \

3,00 \'

n-volum

2,00

e |

\ |

1,00
0,00 .l \- A

o g ¢ - g np—

01234567 8 91011121314151617 1819 20212223 24 2526 27 28 29 30 31 32|

dimensié (n) i

72



| EsOud de e Ousr s dimerissira

= LB hipgEresreaEr s

Els punts vermells sén els valors de la taula anterior. Hem afegit una linia de tendéncia
entre els punts per veure més clarament el comportament de la grafica perd no tenim en
compte els valors fraccionaris de n.
Els resultats son visuals i alhora sorprenents. Partim d’'una 1-esfera (un interval comprés
entre -1 1), que té 1-volum igual a 2. A continuacié una 2-esfera (un cercle) que té 2-volum
(area) igual a . El 3-volum d’'una 3-esfera és més gran que els dos anteriors, aixi com
també ho és el 4-volum d'una 4-esfera (hiperesfera) i el 5-volum d'una 5-esfera. No
obstant, a partir d’aqui el n-volum comenca a decréixer a mesura que n es fa més gran, de
manera que per a valors de n molt grans el seu n-volum és molt proxim a 0.

El fet que la n on una n-esfera tingui valor maxim sigui 5, depén del radi de la esfera? Ho
veurem més clar emprant una altra taula i un altre grafic.

— Taula B

% >3.4. TaulaB

n n-volum (r=1,0) n-volum (r=1,1) n-volum (r=1,2) n-volum (r=1,3)

1 2,00000000000000 2,20000000000000; 2,40000000000000 2,60000000000000
2 3,14159265358979 3,80132711084365 4,52389342116930 5,30929158456675
3 4,18879020478639 5,567527976257069 7,23822947387088 9,20277207991570
4 4,93480220054468, 7,22504390181747| 10,23280584304940 14,09428856497570
5 5,26378901391432 8,47738484479916) 13,09799147910330 19,54408014343290
6| 5,16771278004997| 9,15491842033811 15,43070767782470 24,94356255616020
7 4,72476597033140 9,20723223988290 16,92969070938480 29,64720578103610
8 4,05871212641677| 8,70020989719829 17,45171923692450 33,10816169213390
9 3,29850890273871 7,77771145095568| 17,01958142724830 34,97903559092750
10 2,55016403987735) 6,61446875045002 15,78994356880330) 35,15617685050440
11 1,88410387938990 5,37556825433399 13,99904953632430 33,76616350894050
12 1,33526276885459 4,19062656415230 11,90533697192390 31,10906564965390
13| 0,91062875478328| 3,14373743713696 9,743108938461 27,58067811709580
14| 0,59926452932079 2,27570605281910 7,69406794344149  23,59530006534890
15 0,38144328082330 1,59338324655505 5,87690485712566 19,52451496316540
16| 0,2353306303588 1,08133788936153 4,35089291892057| 15,65929100903550
17, 0,1409811069171 0,71258481565809 3,12782249646926 12,19545211608020
18 0,08214588661113 0,45672433720138 2,18699731690187 9,23774910828378
19 0,04662160103009 0,28513347142491 1,48946690677501 6,81570645156753
20 0,02580689139001 0,17361586051857 0,98937427740473 4,90459036009501
21 0,01394915040902, 0,10322719953681 0,64173233720084 3,44634027677950
22 0,00737043094571 0,05999733431470 0,40689307132958 2,36726366587269
23 0,00381065638685, 0,03412176975441 0,25244597377517 1,59109786339642
24 0,00192957430940 0,01900579112573 0,15339507404227 1,04737442163904
25 0,00095772240882, 0,01037664067499 0,09136309439698 0,67580819970822
26 0,00046630280577| 0,00555747915918 0,05338022817689 0,42775509251528
27 0,00022287212472 0,00292185226054| 0,03061606679112, 0,26578242870312,
28 0,00010463810492 0,00150898544255 0,01724903307643 0,16221975092478
29 0,00004828782274 0,00076599422151 0,00955198780265) 0,09731837324408
30 0,00002191535345| 0,00038240981818| 0,00520218581707| 0,05741813056236|
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En aquesta nova taula, la primera columna indica la dimensié estudiada, en la segona hi ha
el calcul de I'n-volum d’'una n-esfera de radi 1; a la tercera hi ha el mateix calcul pero per un
radi de 1,1; a la quarta amb un radi de 1,2 i a la cinquena amb un radi de 153

Si posem els resultats en una grafica observarem el seguent:

n-volum de n-esferes

40,00 4
|
{
35,00 + e @
4 . =
[ , .
30,00 +— &
°
25,00 . . (e r=1,0]
X | —e—r=1,1|
£ / \ |
3 | —o—r=1,2 |
S 20,00 " . D
s = il

15,00 ; //N\\ >

°
/ ®
10,00 :

T T T T T T T T

3456 7 8 910111213141516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32

dimensio (n)

- -
N

En aquest grafic hi ha 4 séries, que corresponen als 4 radis diferents pels quals hem
calculat el volum. S’observa clarament com el volum maxim s’assoleix a dimensions
diferents depenent del radi de la n-esfera estudiada.

En el cas en que el radi val 1, el maxim volum s’assoleix a n=5. Quan el radi de la n-esfera
val 1,1 el maxim es desplaga fins la dimensié 7. En cas que el radi sigui 1,2 trobem el
maxim a la dimensid 8 i finalment, quan optem per un valor de radi de 1,3 el maxim 'hem
de cercar en n=10.

Notem també com fent una variacié6 de l'ordre de décimes d'unitat en el radi I'n-volum
augmenta en una proporcié molt més gran.
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Finalment proposem una ultima taula amb uns radis proxims a 2:

— Taula C

% >3.5. TaulaC

n | n-volum (r=2,00) | n-volum (r=1,97) | n-volum (r=1,95) [n-volum (r=1,90
1 4,0000 3,9400 3,9000 3,8000
2 12,5664 12,1922 11,9459 11,3411
3 33,5103 32,0249 31,0594 28,7309
4 78,9568 74,3250 71,3523 64,3108
5 168,4412, 156,1815 148,4129 130,3366|
6 330,7336 302,0617| 284,1228| 243,1196
7 604,7700 544,0564 506,5503 422,3335
8 1039,0303 920,6998 848,5260 689,3139
9 1688,8366) 1474,0550 1344,7116 1064,388
10 2611,3680 2245,0725 2027,2823 1563,5225
11 3858,6447| 3267,6334| 2920,6907| 2194,7975
12 5469,2363) 4562,0648| 4036,2873 2955,3570
13 7459,8708 6129,1789 5367,7380 3829,4656)
14| 9818,3500 7945,9484| 6888,1585 4788,1637
15 12499,1334 9963,76241 8549,6658, 5790,7389
16 15422,6282 12109,8308, 10285,6618 6787,9100
17| 18478,6756 14291,7944| 12015,7064| 7726,3101
18| 21534,0513 16405,0626 13652,3944l 8553,6335)
19 24443,1460 18341,9490 15109,3158 9223,7092,
20 27060,4869 20001,3918] 16309,0221 9700,8036
21 29253,4887 21297,9845 17189,9493 9962,6157|
22 30913,8280 22169,1916| 17711,4587 10001,6604
23 31966,1027| 22579,9508| 17856,4800 9825,0012,
24 32372,8850 22524,2810 17631,6185 9452,5271
25 32135,8314 22023,9546 17064,9466 8914,1446
26 31293,0516 21124,6688 16201,9737 8246,3479
27| 29913,3902, 19890,4157| 15100,4629 7488,6404|
28 28088,5774| 18396,8810 13824,8040 6680,2189
29 25924,3274] 16724,6941 12440,6008 5857,2269
30 23531,4316 14953,2386 11009,9874 5050,7574|
31 21017,7230 13155,5439 9588,0160 4285,6572
32 18481,5431 11394,5612 8220,2672, 3580,0872
33 16007,0604 9720,9160 6941,6690 2945,7139
34| 13661,5247| 8172,0499 5776,3847| 2388,3708
35 11494,3231 6772,5382 4738,5443 1909,0161
36 9537,5435 5535,2957 3833,5638| 1504,8261
37 7807,6715 4463,3615 3059,7949 1170,2939
38 6308,0161 3551,9722 2410,2839 898,2346
39 5031,4920 2790,6783 1874,4627| 680,6399
40 3963,4434| 2165,3190 1439,6512 509,3507
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Expressem els resultats en una grafica:

n-volum de n-esferes
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dimensié (n)

En aquest grafic també trobem 4 séries, que mostren els n-volums per n-esferes de radi 2;
1.97; 1.95 i 1.90. A la taula només apareixen els calculs per n compreses entre 1 i 40,
tanmateix en el grafic apareixen també els punts corresponents a les n situades entre 40 i
50 per facilitar la visualitzacié de la tendéncia. Els calculs es poden trobar a I'arxiu indicat a
dalt.

Tal com ja haviem vist a la grafica anterior, el maxim volum es desplaca a dimensions
superiors a mesura que augmentem el radi de I'esfera que estudiem. En aquest cas els
radis son molt semblants, per la qual cosa els maxims també els aconseguim a dimensions
molt proximes. Quan el radi és 1,90 el maxim volum I'aconseguim a la dimensié 22; quan el
radi val 1,95 el maxim cal cercar-lo a la dimensié 23, on també hi ha el maxim quan
estudiem una esfera de radi 1,97. Finalment, quan el radi val 2, trobem el volum maxim a la
dimensi6 24.
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3.5.2. COMPUTACIO DE VALORS POSITIUS

Amb les formules que hem trobat en I'apartat anterior hem pogut calcular els n-volums de
n-esferes, les n dels quals eren valors positius i enters. Prendre valors de n negatius no
tindria sentit doncs una dimensié negativa no significa res. No obstant si que existeixen
dimensions fraccionaries, les quals van lligades amb el tema dels fractals. El tema de les
dimensions no enteres s’allunya d’aquest treball i no hi hem fet referéncia en cap ocasié.
No obstant, amb les férmules que hem trobat per calcular n-volums de n-esferes i un
programari adequat podem intentar cercar en quina dimensié una esfera de radi donat
tindria un n-volum més gran (contemplant també valors no enters de n).

En primer lloc hem de dir que la funcié factorial (x!) porta problemes a la majoria de
programes informatics quan han de processar valors no enters de x. Per aquest motiu
substituirem aquesta funcié per la funci6 gamma. La relacié entre la funcié factorial i la
funcié gamma és la seguent:

x!=T(x+1)

Duent a terme aquest canvi, les férmules per calcular el n-volum de n-esferes queden de la
manera seguent:

cas en que n és un valor imparell cas en que n és una valor parell
-1
2/7_”” A.rn.l—‘(n-"—l) ”%‘rﬂ
2 V,(r)=——~

V()= T(n+1) r(’“z)

2

La manera ortodoxa de trobar el maxim d’aquestes funcions seria derivant-les i buscant-ne
el seu maxim. No obstant, la complexitat que comporta la manipulacié de la funcié gamma
ha fet que en aquest treball només la puguem tractar graficament.

Si utilitzem un programa informatic per dibuixar ambdues funcions ens donarem compte
que totes dues son la mateixa funcio, valida per valors parells i imparells i ja siguin enters o
no. Si introduim qualsevol de les dues a I'ordinador i donem valor 1 a la variable radi (r)
obtindrem la grafica seguent:
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4.375

2.625

0.875

2.4991 4.9982 7.4973 9.9964 12.495 14.995 17.454

.—0.675

Despreciant els valors negatius de n pel motiu ja explicat, podem observar com el maxim
se situa a valors molt proxims a 5 tal com ja haviem vist en les grafiques obtingudes en el
primer subapartat. Si ens apropem més a la grafica podrem trobar una bona aproximacié
del maxim de la funcié. Utilitzem el terme “aproximacié” perqué el busquem mitjangant
tecniques grafiques i per tant cometem un minim d’error.

(5.257292,5.277768)
+ —— —

Mitjangant una ampliacié considerable de la funcié i un métode de seguiment del cursor
hem pogut trobar que el maxim de la funcid n-volum per un radi de 1, es troba
aproximadament a la dimensié 5,257292. En aquesta dimensid, el 5,257292-volum d’una
5,257292-esfera de radi 1 val 5,277768 unitats de 5,257292-volum.

Donem tanta importancia a aquest fet perqué en un article publicat a la revista 'Escaire el
gener de 1895 (corresponent al nombre 13 de la revista), el Sr. Jordi Salat i el Sr. Jordi
Lleonart publicaren quelcom notériament diferent. En ell deien: “Les esferes de radi unitat
tenen un volum maxim en un espai de dimensié 2e”. Si tornem novament a la nostra grafica
i hi posem el cursor sobre el punt (2e, f(2e)) obtindrem el seguent:
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{5.257292,5.277768)

— — .

(2e.f(2e))
—

Quan calculem el punt (2e,f(2e)); observem com aquest aproximadament correspon a
(5.436563657,5.271087539). Si el situem a la nostra grafica veurem com efectivament no
és un maxim, la qual cosa significa que la tesi anteriorment esmentada en I'article citat no
és correcta.
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A més de l'hipercub i la hiperesfera, existeixen moltes altres figures de quatre dimensions.
Una de les families que més interés acapara és aquella que destaca per posseir la
caracteristica de la regularitat. Abans d'endinsar-nos en el tractament de les figures
regulars quadridimensionals ens referirem primer a les de tres dimensions i també a les de
dues.

4.1. Figures regulars planes: poligons requlars

— Anomenem poligon aquella figura plana limitada per una linia poligonal tancada. Direm
que aquest és regular si tots els angles i tots els costats que el constitueixen tenen el
mateix valor.

El poligon regular més simple és el triangle equilater, en el que cada un dels seus angles
interiors val 60 graus. Si afegim un costat més, aconseguirem el quadrat, amb angles de 90
graus. El poligon regular amb 5 costats s’anomena pentagon i en aquest cas els seus
angles interiors mesuren 72 graus. Si parem atencié ens adonarem que sigui quin sigui el
nombre de costats d'un poligon, si aquests tenen la mateixa longitud, sempre el podrem
construir de manera que sigui regular.

Per aquest motiu podem dir que a I’espai bidimensional es poden construir un nombre
infinit de poligons regulars.

OO0

Alguns poligons regulars. D'esquerra a dreta el triangle equilater, el quadrat, el pentagon regular,
I'nexagon regular, 'heptagon regular i I'octagon regular. EI nombre de poligons regulars que podem
construir és infinit.

4.2. Solids requlars tridimensionals: poliedres requlars

4.2.1. DETERMINACIO DELS POLIEDRES REGULARS

Un cop descrites les figures bidimensionals regulars ens podem referir a aquelles que
tenen tres dimensions. Obviament aquestes estaran limitades per poligons 2D. Els solids
regulars tridimensionals els anomenarem poliedres regulars tot i que també sén coneguts
amb el nom de solids platonics.

— Els poliedres regulars sén aquelles figures tridimensionals limitades per poligons
regulars i als vertexs del quals hi conflueixen el mateix nombre de cares planes.

A diferencia dels poligons regulars, el nombre de poliedres que tenen aquesta

caracteristica és molt limitat. Els matematics grecs varen descobrir-los i ja en varen
estudiar les seves propietats.
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Comencem pels més simples i els més populars. En primer lloc trobariem el cub, format
per cares quadrades. Com ja hem explicat anteriorment té 6 cares, 12 arestes i 8 vértexs, a
cada un dels quals hi conflueixen 3 cares.

A continuacié ens referirem a I'octaedre, poliedre que ja ha aparegut en aquest treball
quan seccionavem I'hipercub. Aquest esta constituit per 8 cares planes que sén triangles
equilaters, té 12 arestes i 6 vértexs. A cada un dels seus vértexs hi conflueixen 3 cares
triangulars.

Podem trobar facilment un tercer poliedre regular si seguim el procés seguent:

Comencem agafant dos punts del pla separats per una distancia c. Els unim per obtenir un
segment. A continuacié cerquem un tercer punt al pla que es trobi situat a distancia ¢ dels
dos vertexs del segment i 'unim amb aquests, amb la qual cosa obtindrem un triangle
equilater. Per ultim, busquem un quart punt a I'espai tridimensional que es trobi també a
distancia c dels tres vértexs del triangle i 'unim. La figura que obtindrem sera un tetraedre,
el qual estara constituit per 4 vértexs, 6 arestes i 4 cares que seran triangles equilaters de
costat c. En aquest cas, en un mateix vértexs hi confluiran 3 cares triangulars.

Procés d'obtencié del tetraedre. D’esquerra a dreta: el punt, el segment, el triangle equilater i el tetraedre.

Arribat a aquest punt ens podem plantejar si es poden construir més poliedres regulars a
I'espai 3D. Euclides, en el seu tretzé i dltim llibre, ja va demostrar que n’hi havia dos més.
Seguirem el procés que planteja ell perqué aquest ens servira a 'hora d’estudiar figures
regulars en dimensions superiors. En primer lloc Euclides observa que en un poliedre
regular, els angles de les cares que confluien en un mateix vértex havien de sumar menys
de 360°. Si no fos aixi no es podria muntar la figura a I'espai tridimensional. De la mateixa
manera remarca que per construir un poliedre era necessari que com a minim 3 cares es
trobessin en un vértex determinat. Amb aquestes dues observacions podem dir que si
volem fer un poliedre regular amb cares triangulars només tenim 3 opcions: que 3,405
triangles conflueixin en un vértex. Sis triangles ja sumarien 360° i per tant no tindriem espai
per muntar el poliedre.

Opcions que tenim per crear un poliedre amb cares triangulars. Observem com només és possible fer
confluir 3, 4 o 5 triangles a cada vértexs. 2 son insuficients i 6 no ens deixen espai per muntar la figura.

Tres triangles confluint en un mateix punt i amb una base triangular a sota dona lloc a un
tetraedre. Quatre triangles en un vértex donen lloc a una piramide de base quadrada, i si
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aquesta la unim a una segona piramide idéntica obtindrem un octaedre. Aquestes figures ja
les coneixem pero hi ha un tercer cas possible que encara no sabem quin poliedre ens
permet obtenir: el de 5 cares al voltant d’'un vértex. Si intentem muntar aquest obtindrem
una piramide pentagonal, amb una base de pentagon regular i 5 triangles equilaters com a
costats. Per obtenir un poliedre regular que inclogui aquesta figura hem de comencar
construint una tira formada per 10 triangles equilaters iguals col-locats alternativament
senyalant cap amunt i cap avall. Col-locant aquesta tira entremig de dues de les piramides
pentagonals descrites anteriorment obtindrem un poliedre regular constituit per 20 triangles
equilaters, 30 arestes i 12 vértexs que anomenarem icosaedre.

v

Tira formada per 10 triangles equilaters Icosaedre obtingut en muntar dues piramides
de base pentagonal a sobre i a sota de la tira
de triangles.

De moment hem trobat tots els poliedres regulars que podiem construir mitjancant cares

triangulars peré ens podem preguntar si fent Us d’altres poligons en podem obtenir més. Si

parem atencié al cas de les cares quadrades, veurem com en podem posar 3 al voltant

d'un vertexs (amb la qual cosa obtindrem el cub que ja sabiem) pero si n’hi situem 4 els
angles ja sumaran 360° i per tant no sera possible muntar la figura.

Si intentem posar pentagons al voltant d’'un vértex veurem que

només tenim una opcié. Dos resultaran insuficients i 4 sumaran més

de 360° (els seus angles mesuren 108° i per tant 4 necessitarien

12° 432°). Per aquest motiu només ens queda intentar posar-ne 3 al

voltant d'un vértex, amb la qual cosa encara ens restara espai per

muntar la figura. Si la intentem construir observarem com I'Unica

opcié que tenim és emprant 12 cares pentagonals, de manera que obtindrem una figura
que tindra 30 arestes i 20 vértexs i que anomenarem dodecaedre.

Podem preguntar-nos si es podria trobar algun altre poliedre regular
mitjangant poligons amb un nombre de cares superiors. Aquesta
pregunta queda rapidament resolta. El segiient poligon que hauriem
de provar seria I'hexagon. L’angle que es forma entre dues arestes
d’aquest val 120°. Si intentem posar-ne tres al voltant d’un vértex ens
adonem que ja sumen 360° i que per tant no ho podem muntar. Si
intentem fer el mateix amb poligons de més cares observarem com Dodecaedre

els angles cada cop es fan més grans. Per aquest motiu podem

determinar que només existeixen cinc poliedres regulars a I'espai tridimensional: el
tetraedre, el cub, I'octaedre, el dodecaedre i I'icosaedre.
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4.2.2. DUALITAT DELS POLIEDRES

Els 5 poliedres regulars en 3 dimensions amb les
seves corresponents cares desplegades. En lila el
tetraedre, en vermell el cub, en verd I'octaedre, en
carabassa el dodecaedre i en blau I'icosaedre.

Un concepte que relaciona alguns dels poliedres estudiats és la dualitat. Per exemple si
prenem els centres de les cares quadrades d’'un cub aquests seran els vértexs d’un nou
octaedre que quedara inscrit en el seu interior. Per aquest motiu podem dir que 'octaedre
és el dual del cub. De manera contraria, tragant els centres de les 8 cares triangulars de
I'octaedre aconseguirem els 8 veértexs del cub. Aixi doncs, el cub és el dual de Poctaedre.

v

A l'esquerra podem veure com l'octaedre és
el dual del cub. A la dreta veiem com també
és el cas a linrevés: el cub és el dual de
'octaedre.

Si cerquem els duals d’altres poliedres obtindrem
resultats interessants.

En el cas del tetraedre, els punts centrals de les
seves cares constitueixen les cares triangulars
d’'un nou tetraedre, la qual cosa vol dir que el
tetraedre és dual d’ell mateix.

Vist aixd passem a buscar el dual de I'icosaedre.
Al voltant de cada vertex d’aquest hi trobarem 5
triangles, els centres dels quals definiran 5 punts
que resultaran ser els vértexs d'un pentagon
regular. L’icosaedre té 12 vertexs, de manera que
obtenim un conjunt de 12 pentagons regulars. A
meés aquest té 20 cares triangulars, de manera

que la figura dual tindra 20 vértexs. A cada un d’aquests hi aniran a parar 3 pentagons
regulars. Amb tota aquesta informacié podem determinar que el poliedre dual de

I’'icosaedre sera el dodecaedre.
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Per ultim fixem-nos en el dodecaedre. Aquest esta format per 20 vértexs, amb 3 pentagons
confluint a cada un d'aquests. Els centres dels pentagons donaran lloc a 20 triangles
equilaters, que seran les cares de la nova figura. A més, aquesta tindra 12 vértexs (un per
cada una de les cares pentagonals del dodecaedre). Reunint totes aquestes
caracteristiques podem concloure dient que I'icosaedre és el dual del dodecaedre.

El dual del tetraedre és ell mateix. El dual de l'icosaedre és el El dual del dodecaedre és
dodecaedre. 'icosaedre.

4.2.3. DIAGRAMES D’SCHLEGEL

El 1883, el matematic alemany Viktor Schlegel va inventar una nova manera de representar
els poliedres regulars tridimensionals. Fem mencié d’aquests diagrames perqué ens
resultaran molt Gtils a I'hora de configurar models tridimensionals de figures regulars de
dimensions superiors.

Per aconseguir el diagrama d’Schlegel d’'un determinat poliedre, ens hem d’imaginar que
ens situem molt a prop d'aquest i observem per una de les seves cares situades a la part
meés superior. Fent-ho amb els 5 poliedres anteriors obtindrem les figures bidimensionals
seguents:

Tetraedre Cub Octaedre Dodecaedre Icosaedre

Mitjancant aquestes figures bidimensionals podem observar les simetries que posseeixen
els diferents poliedres regulars. Al mateix temps, aquestes seran Utils en I'estudi de figures
quadridimensionals.
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4.3. Hipersolids requlars de 4 dimensions: politops

4.3.1. DETERMINACIO DELS POLITOPS REGULARS

Ara que ja hem vist que a I'espai tridimensional només existeixen 5 figures que compleixen
la condicié de ser regulars, ens podem preguntar si a I'espai de 4 dimensions hi podem
trobar “hipersolids” que siguin també regulars. Efectivament si que existeixen i se’ls
denomina politops.

— Els politops son figures de 4 dimensions, les “cares” dels quals sén poliedres regulars
tridimensionals. Es caracteritzen per la disposicié idéntica que tenen les seves cares
tridimensionals a cada un dels seus vértexs.

Ara que ja sabem que existeixen figures regulars 4D podem preguntar-nos quines soén i
quantes n’hi ha. Aquesta questié esdevingué molt popular a partir de la década de 1880;
sobretot a EEUU, Escandinava i Alemanya. Un gran nombre de matematics iniciaren una
cursa per ser els primers en determinar quines eren aquestes figures. Una de les primeres
propostes que millors resultats obtingué fou la de 'america William Stringham.
Per entendre el seu raonament ens hem de referir al cas de tres dimensions que ja hem
vist abans. Per poder muntar un poliedre a I'espai tridimensional feia falta que la suma dels
angles dels poligons que confluien en un vértex fos inferior a 360°. De manera analoga, per
estudiar el nombre de politops quadridimensionals que poden existir, haurem de fixar-nos
en el nombre de poliedres regulars que podem fer cabre al voltant d'una mateixa aresta.
Per poder muntar la figura a I'espai quadridimensional sera necessari que la suma dels
= angles que conflueixin a una mateixa aresta sigui inferior a
360°. Si estudiem el cas en queé les cares del politop sén
cubs, observarem que només existeix una possibilitat. Dos
cubs no soén suficients per muntar el politop i amb 4
ocuparem tot I'espai al voltant de I'aresta, de manera que la
Unica opci6 possible és situant-ne 3. Amb aquesta
configuracié obtindrem un politop que ja coneixiem:
Phipercub.
Vist que no podem construir més politops mitjangant cubs, intentem trobar-ne de nous amb
un altre poliedre i agafem el tetraedre. Per descobrir quants tetraedres podrem posar al
voltant d’'una aresta sera necessari calcular I'angle diédric que es forma entre dues cares
del tetraedre. Aquest calcul es pot trobar a I'annex 6 del treball, on es demostra que aquest
angle val aproximadament 70° 31’ 43,61”. Amb aquesta informacié ja podem concloure que
només podrem situar 3 (211,59°), 4 (282,12°) o bé 5 (352,64) tetraedres al voltant d’'una
aresta ja que 6 ja ocuparan 423,17°.
En primer lloc ocupem-nos del cas en qué trobem 3 tetraedres al voltant d’'una aresta. Per
obtenir el politop resultat seguirem el mateix procés que hem emprat per aconseguir el
tetraedre tridimensional. Tracem un segment d’una distancia determinada “c”. Seguidament
dibuixem una linia perpendicular al segment. Tots els punts d’aquesta seran equidistants
als dos vertexs del segment. Cerquem aquell punt sobre la linia que estigui a distancia “c’
dels dos vertexs i un cop localitzat 'unim amb aquests dos. Obtindrem un triangle equnater.
A continuaci6 dibuixem una linia a I'espai perpendicular al triangle i que passi pel seu
centre. Busquem el punt d’aquesta a distancia “c” dels tres vértexs del triangle i 'unim amb
aquest, de manera que obtenim un tetraedre. Per obtenir un politop regular hem de trobar
el punt central del tetraedre i dibuixar una linia cap a la quarta dimensié (que per tant sera
perpendicular al tetraedre). Sobre aquesta linia cal que cerquem un punt que es trobi a
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distancia “c” dels quatre vértexs del tetraedre. Si I'unim amb aquests obtindrem un
hipersolid regular de 4 dimensions que anomenarem 4-simplex. Tot i que nosaltres no
podem fabricar aquest objecte si que podem entendre i estudiar el procés seguit mitjangant
models tridimensionals. Per aconseguir un model bidimensional d’un tetraedre 3D només
cal tragar 4 punts al pla i unir tots els vértexs amb tots. De manera analoga, per obtenir un
model del 4-simplex sobre el pla només haurem de dibuixar 5 punts i unir tots els vértexs
amb tots. Obtindrem resultats diferents segons si el cinqué punt el dibuixem dins els altres
4 o no tal com podem veure a continuacié a les imatges de sota.

Si ens fixem en les projeccions dels 4-simplex de
la dreta observarem com al voltant de cada
aresta s’hi troben 3 tetraedres.

Ara que ja hem trobat el politop 4D amb 3
tetraedres al voltant dels seus veértexs podem
investigar altres casos. Per aquesta finalitat ens
basarem en el principi de dualitat explicat
anteriorment. En aquest cas, com que els
politops estan limitats per figures tridimensionals,
haurem de cercar els punts centrals d’aquestes i
unint aquells que provinguin de cares 3D que Projeccions tridimensionals de 4-simplex. En
comparteixin un vértex obtindrem un nou poliedre la de I'esquerra, el cinqué vértex se situa dins
tridimensional que sera la cél-lula dual del vértex.  ©ls altres 4i ala de la dreta a fora.

El conjunt de cél-lules duals constituiran el politop

dual. Tal com succeia amb el cas del tetraedre, el 4-simplex és dual d’ell mateix. Per
descriure el politop dual de I'hipercub haurem de determinar els punts centrals de cada una
de les seves 8 cares cubiques. Al voltant de cada un dels 16 vértexs que té hi trobem 4
cubs, de manera que obtenim 4 punts. Per tant, la cél-lula dual que apareixera sera un
tetraedre regular. El conjunt dels 16 tetraedres que obtindrem en enllacar els punts de totes
les cares de Ihipercub ens determinara un nou politop que anomenarem 16-cél-lula.
Aquest nou politop sera I'analeg quadridimensional de I'octaedre tridimensional (poliedre
dual del cub) i es caracteritzara per tenir 4 tetraedres al voltant de cada aresta.

Aixi doncs ja hem trobat 3 politops regulars basics: I'analeg del tetraedre (4-simplex),
I'analeg del cub (hipercub) i el seu dual, analeg de I'octaedre, el 16-cél-lula. Perd 'espai
quadridimensional ens permet investigar amb altres possibilitats.

Hem dit que I'angle diédric del tetraedre ens permetia posar-ne 3, 4 o 5 al voltant d’'una
aresta. El cas de 3 és el de 4-simplex i 4 és el del 16-cél-lula. Si intentem situar-ne 5
arribarem a obtenir un nou politop: el 600-cél-lula; caracteritzat per tenir 120 vértexs i 600
cél-lules tetraédriques. L'estudi d’aquest politop és extremadament complex degut a la gran
quantitat de cél-lules que té i, a més, les seves projeccions al pla resulten ser molt poc
clares; motiu pel qual no s’ha pogut endinsar en el seu coneixement fins I'aparicié de la
computaci6 grafica. No obstant, si que podem descriure’n la part proxima a un dels seus
vertex utilitzant un simil amb l'icosaedre. Al voltant de cada vértex de l'icosaedre hi trobem
5 triangles equilaters que constitueixen una piramide de base pentagonal. Per a obtenir
aquesta a partir d'un pentagon en primer lloc cal marcar el punt central del poligon i tragar
una recta que hi sigui perpendicular. A continuacié cal trobar un punt d’aquesta linia que es
trobi a la mateixa distancia dels vertexs que la del costat del pentagon. Per a construir un
600-cel-lula seguirem el mateix procés pero amb una dimensié més. Comengarem amb un
icosaedre tridimensional, al qual cercarem el seu centre. A continuacié tragcarem una linia
dirigida cap a la quarta dimensié que, per tant, sera perpendicular a licosaedre.
Seguidament buscarem el punt situat sobre aquesta que es trobi a una distancia igual al
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costat de licosaedre i 'unirem amb cada un dels seus 12 veértexs. D’aquesta manera
obtindrem 20 tetraedres, cada un dels quals constituira una cél-lula del politop.

Tot politop regular té el seu corresponent dual, que també sera un altre politop regular. Tal
com ja hem dit, cada vertex del 600-cél-lula esta rodejat per 20 tetraedres, motiu pel qual
podem determinar que la cél-lula del politop dual tindra 20 veértexs. Tenint en compte que
aquesta cellula ha de ser un poliedre regular tridimensional, només pot tractar-se del
dodecaedre. Com ja hem dit, per poder construir un politop cal poder situar al menys 3
poliedres regulars al voltant d’'una aresta. L'angle diédric format entre dues cares del
dodecaedre és lleugerament inferior a 120° la qual cosa ens permet encabir 3
dodecaedres al voltant d’'una aresta i encara ens restara espai per muntar-lo. Si el 600-
céllula tenia 120 vertexs, el seu politop dual tindra 120-cél-lules dodecaédriques i 600
veértexs i s’anomenara 120-cél-lula.

Hem estudiat la formacié de politops mitjangant tetraedres (4-simplex, 16-cél-lula i 600-
cél-lula), mitjangant cubs (hipercub) i mitjangant dodecaedres (120-cél-lula). L'angle diédric
que es forma entre dues cares de l'icosaedre és superior a 120° i per tant no podrem
construir cap politop regular amb aquesta figura. No obstant si que podem intentar fer una
altra construccié mitjangant un cinqué poliedre regular: I'octaedre.

Si calculem I'angle diédric de I'octaedre (veure annex 6) descobrirem que el valor d’aquest
és d'uns 109° 28’ 16”. Amb aquesta dada podem determinar que sera possible posar 3
octaedres al voltant d’'una aresta perd no 4 i que, per tant, pot existir un politop regular que
tingui cares octaédriques. Aquest objecte existeix i esta constituit justament per 24 cél-lules
octaédriques; motiu pel qual se’l coneix amb el nom de 24-cél-lula. Al voltant de cada un
dels seus 24 vertexs hi podem trobar 6 octaedres regulars. Si cerquem quina sera la
cél-lula dual d’aquest politop observarem com aquesta és novament un octaedre
(determinat per 6 vértexs sorgits dels 6 octaedres que conflueixen a cada vértexs del 24-
cél-lula). Tenint en compte que el 24-cél-lula té 24 vértexs, obtindrem també 24-cél-lules
octaedriques. Aixi doncs, aquest tetraedre és dual d’ell mateix i, per tant, podem concloure
la recerca de politops regulars de 4 dimensions.

Ara que ja hem trobat tots els politops quadridimensionals regulars resumim les seves
caracteristiques al quadre seguent:

nom poliedres que nam. nuam. cares num. nam.
el formen poliedres arestes vertexs
4- simplex tetraedres 5 10 10 5
hipercub cubs 8 24 32 16
16-cél-lula tetraedres 16 32 24 8
24-cél-lula octaedres 24 96 96 24
120-cél-lula dodecaedres 120 720 1200 600
600-cél-lula tetraedres 600 1200 720 120

4.3.2. DIAGRAMES D’SCHLEGEL

Els politops descrits anteriorment no poden ser construits a I'espai tridimensional i encara
menys sobre el paper. No obstant si que podem estudiar-ne les seves projeccions 3D.
Aquesta operacié la durem a terme de manera poc profunda i només amb aquells politops
meés simples. Com ja hem apuntat, I'estudi de politops més grans porta implicit un grau molt
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elevat de complexitat i que només es possible de realitzar si utilitzem ordinadors que en
facin simulacions.

Si recuperem els diagrames d’Schlegel de l'apartat 4.2.3 veurem com aquests els hem
obtingut mirant de molt a prop i a través d’'una de les seves cares superiors, la seva
estructura interna. El que hem vist ha estat un entramat de linies bidimensional que hem
pogut presentar sobre el paper sense problemes. Raonant per analogia, ens podriem situar
molt a prop d’'una de les cares solides dels politops i observar el seu interior. La imatge que
veuriem la podriem representar sobre una superficie tridimensional de manera que
obtindriem els diagrames de Schlegel dels diferents politops.

Parem atencié al cas més simple de tots: el del 4-simplex. El seu poliedre analeg és el
tetraedre. Si ens fixem en el seu diagrama d’Schlegel observarem un triangle equilater gran
i en el seu interior 3 triangles més petits. Si raonem per analogia i intentem deduir com
seria el diagrama d’Schlegel del politop 4-simplex obtindrem quelcom semblant a un
tetraedre gran, a l'interior del qual hi haura 3 piramides triangulars més petites.

Diagrama d’Schlegel bidimensional Diagrames d’'Schlegel tridimensionals
d’un tetraedre tridimensional. (dibuix en perspectiva) d’'un 4-simplex
quadridimensional.

Procedim a dibuixar el diagrama d'Schlegel d’'un 16-cél-lula. Per aquesta finalitat ens
haurem de servir del diagrama d’Schlegel del seu analeg tridimensional i que sera
I'octaedre (I'octaedre és el dual del cub de la mateixa manera que el 16-cél-lula és el dual
de l'hipercub). Si ens fixem en el seu diagrama observarem com es tracta d’un triangle
equilater gran a l'interior del qual n’hi ha un altre de més petit i cap per avall. Adjacents a
les arestes d’aquest hi trobem 3 triangles isosceles que es dirigeixen als vértexs del triangle
gran. Raonem per analogia i determinem que el diagrama d’Schlegel del politop 16-cél-lula
consistira primerament en un tetraedre regular gran a linterior del qual n’hi haura un altre
de més petit i girat. Adjacents a les cares planes d’aquest ultim trobarem 3 piramides de
base triangular, la punta de les quals acabara als vértexs del tetraedre gran exterior.

‘,‘ b
Diagrama d’Schlegel bidimensional Diagrames d’Schiegel tridimensionals
d’un octaedre tridimensional. (dibuix en perspectiva) d'un 16-

cél-lula quadridimensional.
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Un altre politop que podem representar mitjangant un diagrama d’Schlegel és I'hipercub. De
fet, el model extrusionat al qual ens referiem al segon apartat del treball és un diagrama
d’Schlegel tridimensional d’un hipercub. El quadrat dins el quadrat que podem veure al
model bidimensional esdevé un cub dins un altre cub més gran en el model tridimensional.

N\ » /
— -
N
Diagrama d’Schlegel bidimensional Diagrama d’Schlegel tridimensional
d’un cub tridimensional. (dibuix en perspectiva) d'un hipercub

quadridimensional.

4.3.3. ALTRES PROJECCIONS DELS POLITOPS

Tal com ja hem dit, els diagrames d’Schlegel només sén Utils per fer representacions dels
politops més senzills ja que siné esdevenen molt complicats d’interpretar. Aixi doncs el 24-
céllula, el 120-célllula i el 600-céllula els representarem mitjangant altres tipus de
projeccions. Les més simples sén aquelles que s’obtenen situant una font de llum darrera el
politop i projectant la seva ombra sobre una superficie plana. Aquestes projeccions sén
complexes d’entendre i les presentem en aquest apartat a tall d’'exemple tot i que no hi
farem cap manipulacio.

Projeccié bidimensional
del 16-cél-lula

Dues projeccions bidimensionals d’un 24-cél-lula. A la dreta de cada una podem
observar alguns dels octaedres que constitueixen el politop.

SO
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Dues projeccions bidimensionals d’'un 120-cél-lula. A la de la dreta podem observar la disposicié d’alguns
dels dodecaedres que el conformen.

Dues projeccions bidimensionals d’'un 600-cél-lula. A la de la dreta podem observar la disposicié d’alguns
dels tetraedres que el conformen.

Com ja hem dit, les projeccions sobre el paper d'objectes quadridimensionals perden una
gran quantitat d'informaci6é. Una manera d’evitar parcialment aquest problema és utilitzant
projeccions preparades per ser observades mitjangant ulleres bicolors (t&cnica de I'anaglif),
les quals proporcionen a I'observador una idea de relleu. Les imatges que presentem a

continuacié han estat concebudes per ésser estudiades mitjancant aquest tipus d'ulleres
(proporcionades amb el treball) .
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A l'esquerra observem la
imatge  d'un  120-céllula
constituit per dodecaedres.
Tot i que a la seva superficie
observem hexagons, aquests
so6n en realitat dodecaedres
aixafats, la qual cosa vol dir
que estan constituits per 4
pentagons que ocupen el
mateix pla en la projeccio. Tot
i aquesta incongruéncia
visual, aquest politop esta
format només per cél-lules
dodecaédriques. El fet que es
tracti d'una projecci6 ens
obliga a deformar-lo.

La imatge de I'esquerra és
la representacié6 d’'un 600-
cél-lula, constituit per 600
tetraedres regulars. Tot i
que estd pensada per
aconseguir un  efecte
tridimensional en ser
observada amb ulleres
bicolors, resulta complexa
d’interpretar degut al gran
nombre de linies. El fet que
sigui una projeccid ens
obliga a deformar les
cél-lules de manera que no
les veiem com tetraedres
regulars.
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4.4. Figures regulars de més de 4 dimensions

Ara que ja hem vist quines figures regulars poden existir en un espai de 2, 3 i 4 dimensions,
podem preguntar-nos quines podrem obtenir en dimensions superiors i quina quantitat n’hi
trobarem. Aquesta pregunta té una solucié molt concisa ja que en dimensions superiors a 4
només trobarem 3 figures que compleixin la condicié6 de la regularitat. Podem fer una
mencié de cada una:

e En primer lloc, en qualsevol dimensié trobarem un n-simplex que sera regular. El procés
que hem descrit anteriorment per trobar un 4-simplex es pot anar repetint successivament,
sempre que hi hagi noves direccions (dimensions) en les quals puguem anar tracgant linies
perpendiculars a totes les anteriors. Les “cares” d’aquest n-simplex estaran constituides per
(n-1)-simplexs i, en general, I'n-simplex es caracteritzara per ser dual d’ell mateix.

e En espais de més de 4 dimensions també trobarem un analeg del cub que anomenarem
n-cub. Com ja hem dit, per obtenir un n-cub només cal “arrossegar” un (n-1)-cub cap a una
altra direccié (dimensid). Aixi doncs, sempre podrem anar repetint aquest procés fins
obtenir un cub de tantes dimensions com I'espai continent. A més, I'n-cub estara format per
“cares” que seran (n-1)-cubs.

e Per ultim cal fer referéncia a la n-figura dual de n-cub. Si podem trobar un n-cub regular
per a qualsevol dimensi6, aquest ha de tenir una n-figura que sigui la seva dual. Com ja
hem dit, el dual d’una figura regular també complira la condicié de la regularitat. Aixi doncs,
per a qualsevol dimensié sempre trobarem també una tercera n-figura regular. En aquest
cas, la n-figura estara constituida per “cares” que seran (n-1)-simplexs (aquests els
obtindrem en unir els punts centrals dels (n-1)-cubs que conflueixin a cada un dels vértexs
de I'n-cub).

Aquestes tres figures presentades a les linies anteriors seran les Uniques que podrem
construir en espais de dimensié superior a 4 que siguin regulars. En aquests espais no
podrem obtenir cap altra figura que compleixi la condici6 de la regularitat.

4.5. Férmula d’Euler per poligons, poliedres i politops

En aquest apartat estudiarem la férmula d’Euler, aplicada a poligons, poliedres i politops.
En primer lloc ens referirem al cas bidimensional, seguidament estudiarem el cas de 3
dimensions i finalment el de 4.

4.5.1. FORMULA D’EULER EN 2 DIMENSIONS

Per entendre la formula d’Euler primer és necessari familiaritzar-se una mica amb les
xarxes. A l'espai bidimensional podem dibuixar un nombre n de punts i unir-los d’'una
determinada manera mitjangant arestes. A aquesta construccié 'anomenarem xarxa i
estara constituida pels elements seguents:

- unconjunt n, els elements del qual s’anomenaran nodes o véertexs
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- una regla que especifiqui quan dos vertexs estan units entre si

Vegem un exemple. A continuacié podem observar dues xarxes, en les quals els vértexs hi

son dibuixats com a circumferéncies buides i també observem les arestes que els uneixen.
Si ens hi fixem detingudament observarem com en ambdues
xarxes hi ha el mateix nombre de vertexs i com aquests
estan connectats tots amb tots mitjangcant arestes. Aixi
doncs, podrem passar d'un diagrama a l'altre simplement
movent els punts i les rectes d’'un lloc a un altre tal com
s’indica a continuacio:

Aixi doncs, les dues figures que hem
presentat representen la mateixa A"@ Aj"} ﬁa—) &
xarxa.

Ara que ja hem vist el qué és una

xarxa podem procedir a endinsar-nos-hi una mica més i introduir un altre concepte: el cami.
En una determinada xarxa, un cami entre els vértexs a i b sera la successioé d’arestes,
comengant a “a” i acabant a “b”, tal que el final de cada aresta coincideixi amb el principi de
I'aresta seguent.

Cal destacar que les xarxes les podrem dividir en dos tipus: aquelles en les que dos punts
qualsevols poden ser units per un cami i que anomenarem connexes i aquelles que no ho
poden ser i que per tant anomenarem inconnexes. En el

nostre cas nomeés ens interessaran aquelles que siguin
connexes. En aquest tipus de xarxes, el pla queda dividit
en un nombre finit de regions, les quals podem
anomenar cares. Aixi doncs, podem determinar que

qualsevol xarxa que construim a I'espai bidimensional es

caracteritzara per tenir un nombre concret de veértexs,

arestes i cares. La formula d’Euler ens relacionara Exemp'e de xarxes inconnexes. El
aquests 3 nombres. gﬂm g p';? ;ﬁ:ﬂt i et i 6
Per trobar la relacié que hi ha entre aquests tres valors '

primer caldra comptar el nombre de cares (c), arestes (a) i vértexs (v) d’algunes figures. A
continuaci6 en presentem 3 a les quals ja els hem fet aquest recompte:

|5
Om>ie
3

DB |A|O
—
oo
—_
o|oo|<

A B Cc

Fet aixd podem intentar trobar una relaci6 entre aquests tres nombres. En primer lloc

podem dir que “a” sempre és el nombre més gran. La “c” i la “v’ s6n més petits pero la seva

suma sempre dona un resultat més gran que “a”: 10, 10 16 a la taula anterior. Aquestes
xifres s6n una unitat més grans que la “a” corresponent. Aixi doncs, sembla que:

c+tv=a+1

v—a+c=1
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Euler (707-783) fou el primer que prova que aquesta formula és certa per a qualsevol
xarxa. Si dibuixem unes quantes xarxes més ens adonarem que sempre es compleix
aquesta igualtat, la qual cosa significa que v-a+c sempre es manté constant. Existeixen
diverses maneres que es compleixi aixé perd n’hi ha dues que sén més simples que les
altres. La primera és que tant “a” com “c” decreixin una unitat. En aquest cas la seva
diferéncia no canviara, de manera que tampoc ho fara v-a+c. Una segona manera és que
“v” i “a@” disminueixin totes dues una unitat. La primera correspondria a eliminar una cara
plana junt amb una aresta. La segona representaria suprimir un vértex junt amb una aresta.
Aquestes dues situacions que hem descrit reben el nom de col-/lapses. El que hem pogut
observar és que v-a+c roman invariable en qualsevol tipus de col-lapse i, per tant, també en
qualsevol successié de col-lapses. Vegem un exemple en el que efectuem una série de
col-lapses a una determinada figura:

Podem observar com a la figura inicial i
@ A hem aplicat una serie de col-lapses com
els que hem descrit a dalt i que aquesta

s’ha anat reduint sucessivament. No
obstant I'expressié v-a+c no ha sofert
cap mena d’alteracié. Podem veure com
Q O C C ° després d’aplicar diversos col-lapses
successius a la figura inicial aquesta
se'ns ha reduit a un punt, constituit per
0 cares, O arestes i 1 vertex. De manera que per aquest cas v-a+c = 1-0-0 =1. Perd com ja
hem dit, v-a+c no canvia durant un col-lapse. Per tant, per la figura original també s’ha de
complir que v-a+c =1.
Fet aquest experiment podem dir que qualsevol mapa pot sofrir una série de col-lapses fins
ser reduit a un punt sense que canvii v-a+c. Per un punt aquesta expressié val 1, per tant
v-a+c=1 és certa per a qualsevol xarxa bidimensional. Aquesta férmula és coneguda com
la férmula d’Euler.

4.5.2. FORMULA D’EULER EN 3 DIMENSIONS

Ara que ja hem vist la férmula d’Euler per mapes bidimensionals podem cercar si existeix
una analogia de la férmula que ens serveixi per a figures de 3 dimensions. En primer lloc
farem un canvi en la notacié. El vértexs, que abans anomenavem “v’, passarem a designar-
los amb I'expressioé c,, les arestes amb ¢4, les cares amb c,, i els solids 3D amb cs. Fet aixo
podem agafar un cub i comptar els elements que el constitueixen. Aixi veurem que té 8
vertexs, 12 arestes, 6 cares i 1 cub. Mirant aquestes dades aixi com la férmula d’Euler
d'abans podem conjecturar-ne una per figures 3D:

C—¢+c,—¢ =1

8§-12+6-1=1

Podem veure com és valida per al cub. No obstant, per a demostrar-la hem de procedir a
fer col-lapses. En aquesta ocasi6 col-lapsarem simultaniament un vértex i una aresta, o una
aresta i una cara o una cara i un solid... i, en general, una m-cara i una (m+1)-cara. Vegem
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el col-lapse d’un cub pas per pas. A la dreta de cada figura hi sén comptabilitzats el nombre
de vertexs (o), arestes (c,), cares (C,) i solids (c3):

y, Co Cq (A Cs Co Cq Co Cs
a) h)
> 8 |12 | 6 1 yau"g 515 1 0
b) /l 8 11 4 0 " D. 4 4 1 0
c) | 8 10 3 0 4 3 0 0
7 ) / /
4 8 9 2 0 k) y 3 2 0 0
7 8 2 0
e) e 2111010
5 ] 6| 7210 e 1{olo]o
P
9) 6|6 1]o0
ot

Fet aixo introduim les dades a un full de calcul per tal de verificar que Co-C1+Co-C3; Sempre
pren valor 1:

Etapa del cub c0 ci c2 c3 c0-c1+c2-c3=
a 8 12 6 1 1
b 8 11 4 0 1
C 8 10 3 0 1
d 8 9 2 0 1
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Efectivament, durant la successié de col-lapses aplicats al cub, co-ci+c,-c; roman
inalterable. El procés finalitza amb el punt, moment en el qual I'expressio anterior val 1. Per
tant, co-c4+c,-Cc3=1 és valida per a qualsevol figura tridimensional.

4.5.3. FORMULA D’EULER EN 4 DIMENSIONS

Estudiat el cas tridimensional podem procedir a estudiar el de 4 dimensions. Per a aquesta
finalitat emprarem una de les figures quadridimensionals més tractades en aquest treball:
I'hipercub. Com que aquest té 4 dimensions i no el podem construir realment emprarem
una de les seves projeccions. En concret hem escollit la “projeccié central” de I'hipercub.

Si ens hi fixem detingudament podrem veure com aquest esta constituit per 16 veértexs, 32
arestes, 24 cares, 8 cubs i 1 hipercub. Tenint en compte aquestes dades aixi com les
férmules trobades per dimensions inferiors podem fer una primera conjectura de la formula
d’Euler per figures quadridimensionals:

Gy =16, ¥, —C, ¥e =1

16-32+24-8+1=1

Per I'hipercub es compleix la formula peré si volem demostrar-la sera necessari procedir a
fer col-lapses tal com ho hem fet abans. En aquest cas hi poden haver diverses opcions per
collapsar, no obstant les més facils seran eliminar un vértex i una aresta alhora, una aresta
i una cara, una cara i un solid o bé un solid amb un hipersolid de 4 dimensions.

El procés que cal seguir per col-lapsar un hipercub és molt llarg degut al gran nombre de
figures que lintegren. Per aquest motiu primer presentem els diagrames que mostren els
diferents col-lapses i després fem un recompte del nombre de figures que integren cada
etapa. Els resultats sén presentats en una taula a sota, en la qual també es comprova que
Co-C1+Co-CatCy €s manté constant durant tots els col-lapses. Cal indicar també que en
alguns dels diagrames no s’observa del tot bé quins elements desapareixen doncs alguns
dells queden superposats. Mitjancant les dades de la taula es pot resoldre qualsevol
ambiguitat visual.
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V) @ ac) g

w) @ ad) £

d) k) n

y)[L[J af) —

z) y ag) °

e) 1) s)

o) cu

t)

ab) CL'

a) n) u)

P

Etapa de I'hipercub| c0 ct c2 c3 ¢4 | c0-c1+c2-c3+c4=
a 16 32 24 8 1 1
b 16 31 21 5 0 1
c 16 30 19 4 0 1
d 16 29 17, 3 0 1




| EsHuud deE e Ouisr s dimerissica

H O icOoOms rEsnud Sars oo iedr 25 0 OO iEscoEsss

e 16 28 15 2 0 1
f 16 27 14 2 0 1
g 16 26 13 2 0 1
h 16 25 12 2 0 1
i 16 24 11 2 0 1

15 23 11 2 0 1
k 14 22 11 2 0 1
| 13 21 11 2 0 1
m 12 20 11 2 0 1
n 12 19 9 1 0 1
0 12 18 8 1 0 1
p 12 17 7 1 0 1
q 12 16 6 1 0 1
r 11 15 6 1 0 1
S 10 14 6 1 0 1
t 9 13 6 1 0 1
u 8 12 6 1 0 1
Vi 8 11 4 0 0 1
w 8 10 3 0 0 1
X 8 9 2 0 0 1
y 8 8 1 0 0 1
z 7 7 1 0 0 1
aa 6 6 1 0 0 1
ab 5 5 1 0 0 1
ac 4 4 1 0 0 1
ad 4 3 0 0 0 1
ae 3 2 0 0 0 1
af 2 1 0 0 0 1
lag 1 0 0 0 0 1

Mitjancant aquesta taula podem veure com cq-c1+c,-c5+C, €s manté constant durant tots els
col-lapses. A més, observem com I'hipercub s’acaba reduint a un punt, format per 1 vertex,
0 arestes, 0 cares, 0 cubs i 0 hipercubs. En aquest instant, doncs, co-c;1+C,-C3+C4=1 i, com
que Co-C4+C,-C3+C4 €s constant ja tenim la formula d’Euler per figures de 4 dimensions:

C,—¢te,—c;+¢, =1
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4.5.4. FORMULA D’EULER PER FIGURES DE MES DE 4 DIMENSIONS

A les linies anteriors hem demostrat la formula d’Euler per figures de 2, 3 i 4 dimensions.
Per aquelles que tinguin més dimensions també existeix la seva férmula d’Euler
corresponent. Aquesta generalitzaci6 de la formula la dugué a terme un matematic frances
anomenat Poincaré (1854-1912) i per aquest motiu és coneguda com la formula d’Euler-
Poincaré.

Aquesta férmula generalitzada és més complexa de demostrar i per aquest motiu només en
comprovarem la seva validesa amb cubs de fins a 10 dimensions. Per aquesta finalitat
recuperarem les dades de la taula que hem presentat a I'apartat de I'hipercub en la que
s’havien calculat el nombre de r-cares que constituien diversos n-cubs. Comencem referint-
nos al cas de 5 dimensions.

dimensioé del n-cub dimensions
r=0 r=1 =2 | r=3 | r=4 | r=5 | r=6 | =7 | =8 | =9 | r=10

0 1 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0
2 4 4 1 0 0 0 0 0 0 0 0
3 8 12 6 1 0 0 0 0 0 0 0
4 16 32 24 8 1 0 0 0 0 0 0
5 32 80 80 40 10 1 0 0 0 0 0
6 64 192| 240 160 60 12 1 0 0 0 0
7 128/ 448 672 560/ 280 84 14 1 0 0 0
8 256 1024 1792 1792 1120 448 112 16 1 0 0
9 512| 2304 4608| 5376| 4032| 2016] 672 144 18 1 0
10 1024 5120| 11520| 15360| 13440, 8064 3360, 960/ 180 20 1

e 5-figures

- Férmula per figures de 5 dimensions:
Co—C +c,—c3+c¢,—¢; =1
- Comprovacié de la formula amb un 5-cub:
32-80+80-40+10-1=1

e 6-figures

- Férmula per figures de 6 dimensions:
ey~ +e, —c o, —¢c. 4o, =1
- Comprovacié de la formula amb un 6-cub:
64-192+240-160+60—-12+1=1

e 7-figures
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- Férmula per figures de 7 dimensions:
Co—C+C—C+c,—Cs+cs—¢; =1
- Comprovacié de la formula amb un 7-cub:
128 —448+672-560+280—-84+14-1=1

e 8-figures

- Férmula per figures de 8 dimensions:
Co—C+C—Cy+C —Cs+c—¢,+¢ =1
- Comprovacié de la formula amb un 8-cub:
256-1024+1792-1792+1120-448+112-16+1=1

e 9-figures

- Formula per figures de 9 dimensions:
Co—C +C,—Cy+Cy—C5+Cs—C+¢3—¢y =1
- Comprovacio de la férmula amb un 9-cub:
512-2304+4608—-5376+4032-2016+672-144+18-1=1

e 10-figures

- Férmula per figures de 10 dimensions:
€y —C &, —C, 0y ~C; #C~C, # €, ~C; FC5 =1
- Comprovaci6 de la férmula amb un 10-cub:
1024 -5120+11520-15360+13440 -8064 +3360-960+180-20+1=1

Amb aquestes comprovacions podem veure com la férmula és extrapol-lable per a
qualsevol dimensié. Observem com cada cop que augmentem una dimensié apareix una
nova variable a la férmula, que és el nombre de n-cares que té la n-figura (i que per tant
sempre val 1), el qual es troba sumant o restant segons el signe de la variable anterior
(podem observar com els signes sén de suma i de resta alternats successivament).

Cal apuntar també que existeix una altra versié de la formula d’Euler-Poincaré, en la qual el
nombre de n-cares que té la n-figura no hi son comptats. En aquest cas la formula no
s'igualara a 1 siné que ho fara a 0 en el cas que n sigui un nombre parell 0 a 2 si n és
imparell. Hem optat per treballar amb la primera versid6 perqué proporciona més
homogeneitat al procés.
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Un cop acabat el treball de recerca, podem sintetitzar algunes de les conclusions que hem
extret a partir de I'elaboracié d’aquest. El present projecte tenia com a objectiu fer un estudi
de la quarta dimensié aixi com de les figures més representatives que podem trobar en un
espai quadridimensional. En els casos que ha esdevingut possible hem intentat generalitzar
les formules per poder estudiar resultats corresponents a dimensions superiors i d’aquesta
manera fer-nos una idea més global del concepte de dimensionalitat.

Degut a I'ampli abast tematic del treball hem decidit separar les conclusions obtingudes i
organitzar-les en diferents apartats per tal de fer-ne més facil la seva comprensié. Val a dir
que a continuacié també hi hem inclos les conclusions corresponents als diferents annexos
per tal de crear un bloc més homogeni.

e Concepte de dimensions superiors

— L’espai on vivim té€ només 3 dimensions. La naturalesa del nostre univers ens impedeix
desplacgar-nos cap una quarta direccié (només tenim 3 graus de llibertat) i aquesta ni tant
sols la podem imaginar. No obstant, podem comprendre el significat d’'una quarta dimensié
si raonem per analogia. Si identifiquem la nostra situacié amb la d’'un ésser bidimensional
que intenta comprendre una tercera situaci6 podrem extrapolar els resultats i deduir
propietats de I'espai de 4 dimensions.

— Els punts de I'espai de 4 dimensions estan localitzats mitjangant 4 coordenades (una per
cada un dels eixos que podem situar en aquest espai). | a l'inrevés, per situar 4 valors en
un sistema d’eixos ens fara falta un espai amb 4 dimensions per poder-li fer cabre. Les
formules basiques emprades en geometria analitica tridimensional sén facils de
generalitzar per quatre dimensions i per tant, 'estudi analitic d’espais de n dimensions des
d’un punt de vista estrictament algebraic no comporta cap complicacio.

— L’existéncia de dimensions superiors és incerta. De moment no s’ha pogut demostrar
l'existéncia directa d’aquestes. No obstant aix0, la fisica moderna experimenta una
simplificacié significativa dels seus arguments si considerem la seva existéncia. Sembla ser
que els tres graus de llibertat que coneixem no son suficients per explicar la realitat fisica
del nostre univers.

e Figures de dimensions superiors: I’hipercub i I’'n-cub

— Tot i no saber si existeixen dimensions superiors i ni tan sols poder-hi interactuar, si que
podem imaginar quin seria el procés que s’hauria de seguir per obtenir figures de 4
dimensions analogues a d’altres que ja existeixen a I'espai tridimensional. Una de les més
simples és la del cub de 4 dimensions o hipercub.

— Degut a les 4 dimensions que té I'hipercub, aquest no el podem construir al nostre espai.
Enlloc d'aixd si que és possible el seu estudi utilitzant-ne models tridimensionals. En el
present projecte se n’han estudiat 3.

— Es possible estudiar la geometria d'un cub de quatre dimensions mitjancant dues
tecniques:

- Emprant les projeccions d’aquest a I'espai tridimensional

- Utilitzant les seves seccions tridimensionals
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Tal com ja hem explicat, tant les projeccions com les seccions 3D de I'hipercub mantenen
una relacié analogica estreta amb les projeccions i seccions bidimensionals d’un cub.

— L’estudi analitic de I'hipercub és pot dur a terme de manera simple amb técniques de
geometria analitica. D’aquesta manera podem calcular magnituds com el seu volum, o la
longitud de les seves diagonals.

— Es possible estudiar les figures de diferents dimensions que conformen [I'hipercub.
Aquest estudi és relativament simple si el fem amb una projeccié 3D de I'hipercub. No
obstant, amb cubs de dimensié superior, les seves projeccions esdevenen molt complexes
d’interpretar. En lloc d’aixd és possible deduir una féormula que ens permeti calcular
directament el nombre de r-cares que té un cub de n-dimensions. Aquesta formula també
ens permet lligar el nombre de r-cares d’un n-cub amb I'expansié d’'un determinat binomi
elevat a una determinada poténcia.

e Figures de dimensions superiors: la hiperesfera i la n-esfera

— Si ens atenem a la definicié de circumferéncia i esfera, podem definir com seria una
esfera de 4 dimensions o hiperesfera.

— Es possible estudiar la seva geometria utilitzant les seccions tridimensionals que
obtenim quan aquesta travessa I'espai 3D.

— També podem trobar una férmula que ens permeti calcular I'hipervolum d’una
hiperesfera 4D. Per a obtenir tal formula ens hem de basar en el concepte de seccié i
emprar el métode de la integracié. De la mateixa manera podem deduir una férmula que
ens permeti calcular I'n-volum d’una esfera de n dimensions.

— Obtinguda la formula que ens permeti calcular I'n-volum de n-esferes podem computar-
la i obtenir aixi els valors d'n-volum que correspondrien a diferents n-esferes amb un radi
concret. Estudiant els resultats podem concloure que quan el nombre de dimensions d’'una
n-esfera és molt gran, I'n-volum d’aquesta tendeix a aproximar-se a 0. A més, una n-esfera
de radi donat assoleix un n-volum maxim per un valor de n (dimensié) concret. Si
augmentem el radi, el maxim n-volum l'aconseguirem a dimensions majors. Si el radi
disminueix, I'n-volum maxim caldra cercar-lo a dimensions més petites.

— Cal destacar també que graficament hem pogut comprovar com el volum maxim d’'una n-
esfera de radi 1 no s’obté a la dimensié 2e tal com suggeria un article matematic citat, siné
que aquest se situa en una dimensio el valor de la qual és lleugerament inferior.

o Altres figures requlars de dimensions superiors

— El nombre de figures regulars que podem construir en un espai de n dimensions varia
segons quin sigui el valor de n. Aixi, a I'espai bidimensional podem construir un nombre
infinit de figures regulars planes (poligons regulars). En I'espai tridimensional, en canvi,
només existeixen 5 figures que siguin regulars (poliedres regulars). A l'espai de 4
dimensions hi podrem construir 6 figures quadridimensionals regulars i que anomenarem
politops regulars:

- 4-simplex

- hipercub

- 16-cél-lula
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- 24-céllula
- 120-ceél-lula
- 600-cél-lula

En canvi a partir de la dimensié 5 només podrem construir 3 figures regulars a cada
dimensié.

— Tenint en compte aquestes ultimes consideracions podem determinar que I'espai de 4
dimensions és aquell que més regularitat geométrica té després del de dues.

Deixant a part el cas bidimensional (en qué el nombre de poligons regulars construibles és
infinit), 'espai 4D és aquell en el qual més quantitat de figures regulars podem construir.

— Es possible generalitzar la formula d’Euler per poliedres de més de 3 dimensions.
Podem dur a terme una verificacié de la formula per figures de 4 dimensions aplicant una
série de col-lapses a una projeccié tridimensional de I'hipercub. Podem apuntar també cap
a una generalitzacié d’aquesta.

— De la mateixa manera que hem pogut trobar una formula per calcular el nombre de r-
cares que té un n-cub, podem seguir un procés similar per trobar-ne una altra amb la
mateixa funcié per6 aplicable a I'n-simplex. Igualment podrem relacionar els resultats amb
I'expansié d’'un determinat binomi.

e Altres conclusions

— L’estudi de dimensions superiors se simplifica notériament si s’utilitzen mitjans
informatics. En aquest treball hem pogut veure com podiem estudiar de manera molt visual
la geometria dels diferents politops mitjancant petits applets java.

— El tema de la quarta dimensié esdevingué relativament popular a partir del segle XIX.
Podem trobar diferents artistes que en algun moment de la seva vida s’hi ha referit (com és
el cas de Salvador Dali) i d’altres que han basat integrament la seva obra a aquesta
tematica (com Tony Robbin). A més d’art, arquitectura i escultura, la quarta dimensié s’ha
propagat per molts ambits no cientifics i s’hi troben referéncies a la literatura, al cine o fins i
tot a la religio.

e Conclusions personals

Des d'un punt de vista personal he de dir que la realitzacié d’aquest treball ha estat una
tasca molt interessant i enriquidora. M’ha ajudat a eixamplar el meu ventall de
coneixements sobretot en 'ambit matematic. A més, I'experiéncia de crear un projecte des
de zero i recopilar i classificar un gran volum d'informacié m’ha servit per descobrir nous
métodes d’organitzacié de dades i per aprendre a manipular-les. La redaccié del cos no ha
estat absenta de dificultats, sobretot aquelles parts la font d’'informaci6 de les quals estava
en un altre idioma que no fos catala o castella. Tot i aixo, I'estudi ha valgut molt la pena i he
passat bons moments creant aquest projecte, doncs a mesura que m’hi he anat endinsant
I'he anat veient cada vegada més clar. Abans de comengar a crear aquest treball se’m feia
estrany escriure “quarta dimensi6é”. A hores d’ara se'm fa dificil resistir-me a pensar en la
cinquena.
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A-1.1. Document audiovisual: “Hypercube: projections and Slicing”

Al llarg del present treball hem utilitzat diversos videos i animacions grafiques per fer més
entenedors els conceptes sobre els quals hem tractat. La possibilitat de veure imatges en
moviment de determinades figures i objectes ens facilita molt la comprensié de la seva
geometria i ens la permet estudiar d’'una manera molt més intuitiva i amena.

Pel que fa al tema de la quarta dimensié, un dels primers documents audiovisuals que
tracta sobre aquest fou “Hypercube: Projections and Slicing”. Aquest documental, d’uns 9
minuts de durada, fou creat pel professor de la universitat de Brown, Thomas Banchoff i pel
seu col-laborador Charles Strauss el 1978. Tot i tenir més de 25 anys d’antiguitat, es tracta
d'un document amb un valor cientific immens i que s’anticipa molt a la seva época ja que
utilitza técniques de modelat tridimensional per ordinador que tot just comencaven a
introduir-se als anys 70. Es per aixd que hem decidit afegir aquest document al treball, ja
que creiem que complementa de manera molt clara I'estudi de la quarta dimensio i aclareix
molts del conceptes explicats.

El document, que esta complementat amb diverses explicacions que fa I'autor durant el seu
transcurs, fou creat integrament en angiés. Per facilitar-ne I'entesa a persones amb pocs
coneixements d’aquesta llengua, el document ha estat transcrit, traduit i subtitulat al catala.
La versié que es pot trobar al disc del treball esta integrament subtitulada al catala i a més
conserva les explicacions originals de I'autor.

é >A-1.1. Hypercube: Projections and Slicing

A-1.2. Transcripcid i traduccié del contingut

Com ja hem dit, el document ha hagut de passar per un procés de transcripci6 i traduccié
abans de poder ser subtitulat. A continuacié presentem el text original en anglés i la seva
traducci6 al catala. Ambdés documents s6n molt Utils per a comprendre millor el
documental:

Transcripcio original:
‘“HYPERCUBE: PROJECTIONS AND SLICING”

We start with a square. Which is really a head-on view of a cube which begins to rotate. Our first
impression of a rotating 3-cube is that of squares sliding. This is the revolving door illusion. If we rotate de
3 dimensional cube about a different axis we get parallelograms and rectangles, images that we readily
interpret as the shadows of a rotating 3 dimensional cube. But now we rotate in four dimensional space.
Our first view of a rotating four dimensional cube gives us the impression of three dimensional cubes
sliding. The revolving door illusion in one higher dimension. If we stop the four dimensional rotation and
revolve around an axis in three space we get something which resembles a wire-frame model like the
frame of a box cape. But now we rotate in a different plane in four dimensional space. This is our first
really good view of a four dimensional cube. It has 16 corners, 8 on the red cube, 8 on the green cube with
corresponding corners connected. But as we rotate it in tree space we see that one three dimensional face
is still quite flat. We rotate again in four dimensional space this time leading to truly general positions. At
almost any instant the four edges that come out at one of the corners have no three lines lying on a plane.
Stopping our four dimensional rotation, we show a three dimensional spin around an axis where we see
the red cube and the green cube interlaced. At the end of the four dimensional rotation we fold all the way
back, come back to three space, continue back to the plane and end at the square.

Viewing objects in three dimensional space we are aided by the devices of perspective. As we rotate a
tree cube in perspective we see each of the six bounding squares as the smallest farthest away square
and then again as the largest closest square. This is not the top view of some two dimensional creature
swimming in on itself, it's a rotating three dimensional cube and we are quite used to these perspective
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distortions. But now we go to four space. We change our perspective and we proceed to walk around that
four dimensional cube. As we walk around we see each of the eight cubical faces as the smallest cube
when it's furthest away or the closest cube when it's largest. This is not a three dimensional creature
swimming through itself, it's the shadows of a rotating four dimensional cube. This is the best rotation with
the red cube now largest, now flattened out; now turned inside out as the smallest furthest away cube. And
if we become comfortable with rotations every once in a while we see a rotation which confuses us once
more. Rotating directly toward us and away from us we find another very strange view of the rotating four
dimensional cube in perspective. At the end we go back and end at the three dimensional cube.

In addition to projections and rotations we can use de device of slicing. Slicing a square by an edge
parallel to one side gives us a segment for a while. Corner first gives us a segment which grows and come
back off ending at a corner. We can use the same technique to slice a three dimensional cube. Parallel to
one face we get a square for a while. Edge first we get rectangles which grow and come back off ending at
an edge. Most interesting is corner first. What do we get half way through. We can see that a bit more
slowly. Triangles which become cut off so that half way trough we cut each of the six bounding squares in
precisely the same way. We obtain a perfect regular hexagon half way through the cube.

We can use the same technique to slice a four dimensional cube. We position a three dimensional knife
parallel to one face to get a cube for a while. Square first our slices are square prisms that come back off
ending in a square. There are two more symmetrical ways of slicing a four dimensional cube. Edge first
gives us triangular prisms. Half way through a hexagonal prism coming all the way back off ending at an
edge. Most interesting, most challenging what do we get when slices comes trough corner first, along the
long diagonal. We can see that more slowly. A small tetrahedral pyramid which grows until it hits the
vertices and becomes truncated, cut off so that three-eighths off the way through, we have four equilateral
triangles, four regular hexagons. One hexagon exactly half way through that red cube. This is a semi-
regular  polyhedron already known to Archimedes. Half way trough we cut each of the eight bounding
three dimensional cubes in precisely the same way. We get eight equilateral triangles fitting together to
form a perfect regular octahedron, a platonic solid. We complete our tour of the four dimensional cube by
showing slices which go off at a point not situated at the center of screen. One last pass. Tetrahedron,
tetrahedron cut off; in the middle the octahedron. Tetrahedron cut off the other way, coming back off
ending at a point. Completing our tour of the four dimensional cube.

Traducci6 al catala:
“‘HIPERCUB: PROJECCIONS | SECCIONS”

Comencem amb un quadrat, que és la vista frontal d’un cub, el qual comenca a girar. La nostra primera
impressi6 d’un cub tridimensional rotant és d’'uns quadrats lliscant uns sobre els altres. La il-lusi6 de la
porta giratoria. Si girem el cub tridimensionalment al voltant d’'un altre eix obtenim paral-lelograms i
rectangles, imatges que facilment interpretem com les ombres d’un cub tridimensional que gira. Pero ara
el fem girar en I'espai de quatre dimensions. La nostra primera impressié d’'un cub quadridimensional
girant és d'uns cubs tridimensionals lliscant uns dins els altres. La il-lusié de la porta giratoria en una
dimensio superior. Si aturem la rotacié quadridimensional i el fem girar al voltant d’un eix de I'espai
tridimensional obtenim quelcom semblant a un model metal-lic que ens recorda una caixa rectangular.
Pero ara girem en un pla diferent en I'espai quadridimensional. Aquesta és la primera bona visié d’un cub
de quatre dimensions. Té setze vértexs, 8 al cub verd, 8 al cub vermell amb els corresponents vertexs
connectats. Perd a mesura que el fem girar en I'espai tridimensional observem que una cara
tridimensional encara és plana. El girem altre cop a I'espai quadridimensional i aquesta vegada ens
condueix a posicions veritablement generals. A gairebé qualsevol instant, d’entre les 4 arestes que
sorgeixen d’un dels vertexs no n’hi ha 3 que estiguin situades en un mateix pla. Aturant la rotacié
quadridimensional, observem un spin tridimensional al voltant d’un eix on podem veure el cub vermell i el
cub verd entrellagats. Al final de la rotacié quadridimensional desfem tot el cami, tornem a I'espai de tres
dimensions, seguim enrere fins el pla i acabem amb el quadrat.

En la visualitzacié d’objectes tridimensionals estem ajudats pel fenomen de la perspectiva. A mesura que
girem un cub de tres dimensions en perspectiva veiem cada una de les sis cares que limiten el cub com el
quadrat mes petit i més allunyat i posteriorment com aquest esdevé la cara més gran i més a prop de
nosaltres. No estem davant una criatura bidimensional nedant dins ella mateixa siné que es tracta d’'un
cub tridimensional girant, i nosaltres estem acostumats a aquests tipus de distorsions causades per la
perspectiva. Perd ara ens traslladem a I'espai de quatre dimensions. Canviem la nostra perspectiva i ens
disposem a moure’ns al voltant d’aquest cub de quatre dimensions. A mesura que girem al seu voltant
observem cada una de les seves vuit cares cubiques com la més petita quan esta més allunyada i com la
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meés gran quan la tenim a prop. No es tracta d’una criatura tridimensional nedant dins ella mateixa, és
'ombra d’un cub quadridimensional rotant. Aquesta és la millor rotacié, amb el cub vermell com el més
gran, tot seguit aplanant-se i acabant a l'interior com el cub més petit i allunyat de nosaltres. | si ens
sentim comodes amb aquestes rotacions podem observar-ne una altra que ens confon una mica més.
Girant directament cap a nosaltres i en direcci6 contraria a nosaltres trobem una altra vista forga estranya
d'un hipercub en perspectiva rotant a I'espai de quatre dimensions. Finalment tornem enrere i acabem
amb el cub de tres dimensions.

A més de les projeccions i les rotacions podem utilitzar la técnica de la intersecci6. Tallant un quadrat
mitjangant una linia paral-lela a un dels seus costats obtenim un segment durant uns instants. Comencant
per un vertex aconseguim un segment el qual creix i retrocedeix acabant al vértex oposat. Podem utilitzar
la mateixa técnica per tallar un cub tridimensional. Paral-lelament a una cara obtenim un quadrat durant
uns instants. Comengant per una aresta obtenim rectangles que creixen i retrocedeixen acabant a una
aresta. Es més interessant quan comencem per un vertex. El que obtenim a mig cami. Ho podem veure
més a poc a poc. Triangles que esdevenen truncats de tal manera que a mig cami tallen cada un dels sis
quadrats de cub de manera identica. Obtenim un hexagon perfectament regular a mig cami del cub.
Podem utilitzar la mateixa técnica per tallar un cub de quatre dimensions. Disposem un ganivet
tridimensional paral-lel a una de les cares per obtenir un cub durant uns instants. Comengant per un
quadrat les seccions que obtenim sén prismes quadrats que creixen, retrocedeixen i acaben a un altre
quadrat. Hi ha dues maneres més de tallar un cub quadridimensional simétricament. Comengant amb una
aresta obtenim prismes triangulars. A mig cami un prisma hexagonal, el qual retrocedeix i acaba en una
aresta. Més interessant i més desafiant és el que aconseguim quan les seccions parteixen d’un vértex i es
desplacen a través de la diagonal gran del cub quadridimensional. Ho podem veure més lentament. Una
piramide tetraédrica, la qual creix fins que toca els vertexs i es trunca, de manera que a tres vuitens del
cami obtenim quatre triangles equilaters i quatre hexagons regulars. Un hexagon exactament a meitat de
cami del cub vermell. Aquest és un poliedre semiregular ja conegut per Arquimedes. A mig cami tallem
cada un dels vuit cubs de I'hipercub de manera exactament igual. Obtenim vuit triangles equilaters
encaixant junts formant un octaedre perfectament regular, un solid platonic. Completem el nostre viatge
pel cub de quatre dimensions mostrant com les seccions retrocedeixen cap a un punt no situat al centre
de la pantalla. Una ultima passada. Tetraedre, tetraedre truncat: a mig cami: I'octaedre. Tetraedre truncat
a l'inrevés retrocedint i acabant en un punt. Completant el nostre viatge pel cub de quatre dimensions.

A-1.3. Descripcié de les parts i del contingut

El documental del que tracta el present annex es divideix en diferents parts. A continuacio
en fem un resum esquematic amb I'objectiu de facilitar la seva comprensié en el moment
de visualitzar-lo.

— 1. Introduccié (fins 3’ 29”): presentacid del cub i del seu analeg a la quarta dimensio
(hipercub). Comparacio del cas tridimensional amb el de quatre dimensions.

— 2. Estudi de les projeccions (fins 5 40”): estudi de la rotacié tridimensional del cub.
Comparacié d’aquesta amb la de I'hipercub en I'espai de 4 dimensions.

— 3. Estudi de les seccions (fins el final): Estudi de les diferents maneres com es pot
seccionar un cub 3D aixi com de les seccions bidimensionals que s’obtenen. Estudi de les
maneres com es pot seccionar un hipercub 4D i de les seccions 3D que s’obtenen.
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A-2.1. Utilitzacié d’applets en I'estudi de figures 4D

Durant tot el treball hem utilitzat fotografies i representacions grafiques de figures
tridimensionals per complementar les explicacions. En aquest annex presentem una série
d'applets que permeten generar a la pantalla de I'ordinador diferents figures amb textura
tridimensional relacionades amb els temes tractats en aquest treball. Una de les principals
caracteristiques d'aquests petits programes és que ens permeten moure a voluntat les
figures generades la qual cosa ens facilita I'estudi de la seva geometria.

A continuaci6 fem una breu descripci6 dels applets que es podem trobar al disc del treball i
expliquem el funcionament basic d’aquests. Tots ells han estat creats per Mark Newbold,
qui molt amablement ens els ha cedit especialment per aquest treball.

Nota: Per a poder-los visualitzar és necessari tenir instal-lada la maquina virtual Java 1.1
aixi com Internet Explorer.

A-2.2. Descripcié dels applets i del seu funcionament

A-2.2.1. STEREOSCOPIC ANIMATED SIMPLEX, HYPERCUBE, 16-CELL | 24-CELL
En aquest apartat ens referirem a 4 applets, que son:

% >A-2.1. Stereoscopic Animated Simplex
>A-2.2. Stereoscopic Animated Hypercube
>A-2.3. Stereoscopic Animated Cross-Polytope
>A-2.4. Stereoscopic Animated 24-cell

Ens referirem a ells conjuntament perqueé tots comparteixen els mateixos comandaments i
presenten el mateix aspecte. Per a visualitzar-los correctament és necessari utilitzar les
ulleres blaves i vermelles que proporcionem amb el treball. D’aquesta manera
s'aconsegueix que les figures prenguin un efecte tridimensional.

Mitjancant aquests applets podrem observar les arestes de diferents figures 4D. En primer
lloc podem veure el 4-simplex, seguidament I'hipercub, a continuacié el 16-cél-lula
(anomenat també cross-polytope) i finalment podem observar les arestes del 24-cél-lula.

Projection: Speed:

Projection: Speed. Detach
- Joo | -Jw =] stan | stereo

Stereoscopic Animated Simplex Stereoscopic Animated Hypercube
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Projection: Speed: Detach Projection: Speed: Detach

5 ORI [ T oo | ST o] set| swmo

Stereoscopic Animated 16-cell Stereoscopic Animated 24-cell
Comandaments:

- Projection: canvia la perspectiva de la projeccié. El seu valor oscil-la entre 0 i 0.95.
Modificant aquest parametre podem estudiar com es veuria I'hipercub situant-nos més o
menys lluny a I'espai de quatre dimensions.

- Speed: mitjancant aquest comandament podem augmentar o disminuir la velocitat
d’oscil-lacié de la figura.

- Start/stop: inicia o atura el moviment de la figura.

- Detach: amb aquest bot6é podem fer que I'applet es traslladi a una pantalla nova.

- Stereo: prement-lo successivament ens permet canviar el color de la figura i el fons de
I'applet perqué es pugui veure amb altres tipus d'ulleres.

A-2.2.2. HYPERSPACE POLYTOPE SLICER

é >A-2.5. Hyperspace Polytope Slicer

Un altre applet que també hem cregut interessant incloure en aquest annex és el
“‘Hyperspace Polytope Slicer’. A diferéncia dels anteriors, en els quals es mostrava la
projecci¢ tridimensional d’'una figura de 4 dimensions, mitjancant aquest programa podrem

Detach || Simplex, Shell #0, Telrahedrai) Section 0.65 estgtdiar les s?lccions tridimensionals que
z == s'obtenen en tallar determinats politops. En
Section: 4 » ]D.Ss 2 )
I ¥ concret es poden estudiar les seccions del 600-
shel: _4 | [0 ‘ . k
e - cellula, el 120-cél-lula, el 24-céllula, el 16-
= il - céllula, Phipercub i el 4-simplex.
Separation: Ll e _)_jlu.o
| Rowmonessq] i La imatge generada apareix en un requadre
viewpoint 4| [ — »|foo sobre els comandaments. Procedim a estudiar
maxspees: 4] [ p|[sores superficialment les funcions d’aquests.

Hyperplanes: [Simplex  ~| | 3-Rotaion  Detach En primer lloc trobem una barra horitzontal
3Symmetry: [Tetrahedrail@) ~| | 4-Animafion  Avout corresponent a la “Section”. Mitjangant aquesta

StereoMode: [sngie =] /o Lgning  Newcolors || POdeM triar per a quin punt volem seccionar la
. el o4 figura 4D estudiada. Movent-la un primer cop fins
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a I'extrem esquerre observarem com al requadre de la dreta hi apareix 0.0. En aquest
instant estarem tallant la figura just per la meitat. Retornant la barra a la dreta, observarem
les seccions de la segona meitat del politop.

Observem com la segona opcié retolada amb el mot “Shell” esta desactivada en un principi.
A continuacié hi trobem la barra desplacadora corresponent a “Size”. Fent Us d’'aquesta
controlarem la mida de la figura i, per tant, també de la seccié. La tercera barra correspon
al valor “Separation” i només és activada quan visualitzem les figures en mode
estereografic. En aquest cas no sera necessari variar el valor. La quarta barra
(“Roundness’) i la cinquena (“Viewpoint’) canvien caracteristiques de les seccions perd és
preferible no modificar els valors predeterminats. L'Gltima barra, retolada amb “Max.
Speed” controla la velocitat de rotacié automatica 3D i 4D quan aquestes estan activades.
Procedim a estudiar la segona part del panell de control. El primer menu desplegable
corresponent a “Hyperplanes” ens permet escollir quina figura volem seccionar. En el ment
apareix cada politop diverses vegades, algunes d’elles amb uns valors entre paréntesis a la
dreta. Recomanem escollir aquells que no tinguin aquest paréntesis. Just a sota trobem un
altre desplegable etiquetat amb el nom “3-Symmetry”. Aquest ens permetra escollir per
quina de les figures que integren el politop volem iniciar la seccié. A continuacié trobem una
altra opcié a escollir anomenada “Stereo Mode”. Aquesta ens permet triar la manera com
volem veure les seccions. Recomanem escollir Single si es volen veure les seccions
acolorides normalment o bé Anagliyph per ser vistes mitjancant les ulleres i aconseguir un
efecte 3D. L'UItim menu correspon a “Color Scheme’ i varia segons l'opcié escollida al
menu anterior. Si hem decidit veure les seccions en mode Single recomanem triar I'opcié
By Chunck i en cas que es vulguin veure amb mode Anagliyph sera preferible activar
I'opcié Red-Blue-Black.

Un cop descrits els menls desplegables farem referéncia a les caselles activables de la
dreta. La primera, “3-Rotation” ens activa la rotacié automatica tridimensional. La segona,
“4-Rotation”, fa que la seccié avanci automaticament a velocitat constant. La tercera opcié
(‘Lighting”) activa o desactiva les ombres de les seccions i la Ultima (“Edges”) fa visibles o
no les arestes. Per Ultim, el botd “Detach”, ens possibilitara traslladar I'applet a una altra
pantalla.

Hem cregut interessant fer mencié d’aquests applets en un annex del treball perqué han
esdevingut de gran ajuda a I'hora d'elaborar les explicacions de determinats apartats i
poden aclarir processos ja tractats en videos i sequeéncies anteriors.
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Durant tot el treball hem tractat el tema de la quarta dimensié d’'una manera seriosa i
estrictament matematica. No obstant, aquest tema resulta ser molt més proxim a nosaltres
del que pensem. Cine, televisid, art... Practicament a tot arreu podem trobar petites
referéncies a aquesta dimensio, per molts “desconeguda”. En aquest apartat del treball
farem un breu esment d’aquests casos.

A-3.1. Art, arquitectura i dimensions superiors

Com ja hem explicat a la breu ressenya historica feta a I'apartat introductori del treball, el
tema de la quarta dimensié ha estat font d’inspiracié per un gran nombre d’artistes. Un
exemple d’'aixo el trobem amb el corrent cubista. Deixant de banda les influéncies que
aquest tema hagi pogut tenir en les diferents tendéncies artistiques; hi ha alguns pintors,
escultors i arquitectes que s’han basat en figures de dimensions superiors per crear
determinades obres. Procedim a fer un repas d’alguns d’ells:

e Salvador Dali (1904-1989)

L'artista empordanes, gran afeccionat a la ciéncia, va mostrar un gran interés pel tema de
les dimensions superiors. Del 1954 data un dels seus quadres més representatius, titulat
Corpus Hipercubus. En ell podem veure Crist crucificat en un model d’hipercub desplegat.
Per a l'autor, aquesta obra significa la consecucié d’un dels seus objectius: poder unir art,
religié i ciéncia en una sola obra. El 1975, durant una estada a Nova York, Dali es va trobar
amb el professor Thomas Banchoff, amb qui va estar parlant de les dimensions superiors i
van discutir sobre alguns efectes artistics de la perspectiva en espais de més de tres
dimensions. La internacionalitat del pintor ha fet que aquest quadre hagi aparegut en un
gran nombre de publicacions que tracten aquesta tematica.

Dali agafant un model d’hipercub desplegat. Per ell, tant Corpus Hipercubus (1954)
Déu com P'hipercub pertanyien a dimensions superiors.
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e Tony Robbin

Tony Robin és un dels artistes actuals amb més projeccié internacional, les obres del qual
es basen integrament en figures de més de 3 dimensions. En la creaci6 d’aquestes utilitza
la pintura com a base, combinada amb estructures amb relleu que creen un efecte visual
canviant depenent de la posicié de I'observador. La figura predominant en la seva obra és
I'hipercub, tal com podem veure en les imatges seguents:

Sense titol (1996-1998)

COAST (1994)

A més d’aquests podem trobar molts altres artistes, I'obra dels quals en algun moment s’ha
inspirat en la quarta dimensié. José Yturralde, Attilio Pierelli, Otto von Spreckelsen, Max
Bill... en sén altres exemples.
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Estudio de hiperpoliedro Hipercubo Pentacell
(1975-1976) José Yturralde (1977) José Yturralde Attilio Pierelli

Ipercubo 1 Arc de Defense
(1970) Attilio Pierelli (1982) Otto von Spreckelsen

Arc de Defense
(1982) Otto von Spreckelsen
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A-3.2. Jocs, ciéncia ficcio i dimensions superiors

La quarta dimensio, a més de ser un tema interessant d’estudiar des d’un punt de vista
estrictament matematic, també resulta ésser molt atractiu en el moment en que es
comenca a especular sobre com serien els analegs, a dimensions superiors, dels objectes i
les coses més quotidianes.

Com seria, per exemple, un tres en ratlla de quatre
dimensions? La captura de I'esquerra s’ha extret de la
pagina web indicada, on s’hi pot trobar un exemple
interactiu d’un tres en ratlla 4D.

X's Score 0 O's Score 0

http://www.geocities.com/ResearchTriangle/System/3517
ftictac4d/tictac4d.html

[restart] Level [100% ~

Un altre joc que ha esdevingut molt popular és el cub de Rubik. Aquest giny, inventat pel
professor hongarés Erné Rubik el 1980, té com a objectiu recompondre el trencaclosques
de manera que cada cara sigui d’'un Unic color. Com és d’esperar també existeix el seu
analeg de 4 dimensions. La versi6 interactiva del joc es pot trobar al disc del treball i a
continuacié presentem algunes captures. L'objectiu d’aquest segueix sent idéntic al del cub
de Rubik original: fer que cada cara sigui d’un unic color. El repte, perod, esdevé certament
molt més complex. Segons els seus creadors I'hipercub de Rubik es pot trobar en
1.756.772.880.709.135.843.168.526.079.081.025.059.614.484.630.149.557 651 477.156.0
21.733.236.798.970.168.550.600.274.887.650.082.354.207.1 29.600.000.000.000.000
estats diferents.

@ >A-3.1. Cub de Rubik 4D
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Deixant de banda els jocs, com ja hem dit el tema de la quarta dimensié desperta un
interés i una curiositat notable. Aquest és el motiu pel qual hi ha un gran nombre de
conjectures sense rigor cientific que especulen sobre possibles usos de la quarta dimensio.
Religio, misticisme, ciéncia ficcié... La possibilitat de que existeixi una nova “direccié” que
encara no hem pogut explorar és una ocasioé perfecta per justificar (0 si més no, no
descartar) coses que a dia d’avui la ciéncia encara no és capa¢ d’aclarir com serien els
viatges interestel-lars, la telepatia, el cel i I'infern o fins i tot I'existéncia de Déu.

Tots aquests assumptes, completament allunyats de I'objectiu perseguit per aquest treball,
els hem volgut incloure en aquest annex a tall de curiositat.

SELYAE/A

£
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A-4.1. Calcul del nombre de r-cares d’un n-simplex

A-4.1.1. OBTENCIO DE LA FORMULA GENERAL

Quan feiem l'estudi de I'hipercub hem pogut desenvolupar una férmula amb la qual hem
pogut calcular el nombre de r-cares que tindria un n-cub de qualsevol dimensié (entera i
positiva).

Tal com ja hem vist, I'analeg del tetraedre en 4 dimensions és el 4-simplex. No obstant, en
espais de més de 4 dimensions (diguem-ne de “n” dimensions) podrem construir també un
simplex de n dimensions. A aquest simplex 'anomenarem n-simplex. Per aquesta figura
també sera possible crear una formula que directament ens permeti calcular el nombre de
r-cares (cares de “r’ dimensions) de les que estara format. Procedim doncs a deduir-la.
Com que aquest procés presenta notories similituds amb el del n-cub, a algunes de les
seves parts nomeés ens hi referirem per sobre.

Val a dir que colloqguem aquesta formula en un annex simplement per una questio
d’'extensio. Hem cregut convenient no perllongar més el cos del treball i és per aixd que la
presentem aqui.

Comencem fent un quadre en el que podem trobar el nombre de figures de diferents
dimensions que integren un triangle, un tetraedre i un 4-simplex:

figura nam. vértexs | num. arestes | num. triangles | nam. tetraedres | nam. 4-simplexs
triangle 3 3 1

tetraedre 4 6 4 1

4-simplex |5 10 10 5 1

Intentem buscar una férmula per calcular el nombre de vértexs. Observem com un triangle
2D en té 3, un tetraedre 3D en té 4 i un 4-simplex en té 5. En definitiva, que per cada
dimensié que augmentem, augmenta una també unitat el nombre de vertexs. Aixi doncs
podem escriure:

X,=n+1

Al llarg d’aquesta explicaci6 emprarem la mateixa notacié que en el cas del n-cub. Aixi,
aqui X, vol dir el nombre de “cares” de 0 dimensions (vértexs), X; vol dir el nombre de
“cares” de 1 dimensi6 (arestes), X, vol dir el nombre de cares de 2 dimensions (triangles),
X3 el nombre de “cares” de 3 dimensions (tetraedres), i aixi successivament.

Dit aix6, podem cercar la formula per calcular el nombre d’arestes. Si ens imaginem un
triangle (2D) veurem com de cada vertex en sorgeixen dues arestes. En el cas del tetraedre
(3D), de cada vértex en surten 3 i si observem la projecci6 d’'un 4-simplex (4D) veurem com
n’hi surten 4. Fem una primera conjectura de férmula:

*X,=X,n

Pero aquesta férmula no és correcta. Cada una de les arestes esta limitada per dos
vértexs, la qual cosa significa que hem comptat cada aresta dues vegades. Corregim i
obtenim:
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X = ;
Seguim i ara busquem la formula que ens calculi el nombre de cares triangulars
bidimensionals. Tenint en compte que en un tetraedre 3D dos triangles intersecten en una
mateixa aresta i que en un 4-simplex 4D s6n 3 els que ho fan a cada una delles
conjecturem la férmula seguent:

X, =X {n-1)

Tornem a errar. Cada cara bidimensional toca a 3 arestes alhora. Per tant hem de dividir la
férmula anterior per 3:

X, X, (n-1)

B 3

Si ara ens centrem en el 4-simplex veurem com en cada una de les seves cares planes hi
conflueixen 2 tetraedres 3D. Abans de precipitar-nos a fer una primera especulaciéo hem de
tenir en compte que cada un dels tetraedres toca amb 4 cares alhora, aixi doncs, la férmula
obtinguda sera la seguent:

X,(n-2)

X; = 2

Arribats a aquest punt podem anar substituint successivament les férmules de manera que
totes es trobin només en funcié de n. Mostrem el procés a continuacio:

. XlzXo-n : Xl:(n+l)-n
2 2

(n+1)n .

R ) B (n-1) oy, _r)a(n-)

3 3 32

(n+l) (n l)

oy Xaln2) (n- 2) _(n+1)n(n-1)(n-2)

i 4 ’ 4 432

Ara que ja hem fet aquesta substituci6 podem procedir a fer una generalitzacié de la
formula que ens serveixi per calcular el nombre de cares de r dimensions d’'un cub de n
dimensions i que, per tant, simbolitzarem amb X; (nombre de cares de r dimensions) .
Tenint en compte aquesta notaci6, fixem-nos primer en el numerador. En ell apareix una
série de nombres multiplicats. El primer nombre que veiem sempre és (n+1), i a partir de
llavors els nombres van disminuint una unitat fins que arribem a un valor que és (n-(r-1)).
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Dit aixd fem-nos ressd del que passa al denominador. En ell també apareix una successio
de nombres multiplicats entre ells. El primer sempre és una unitat més gran que ri els que
el segueixen van disminuint una unitat fins arribar a dos. Per tant, podem expressar el
denominador fent servir la funcié factorial de la manera seguent: (n+1)!
Aixi doncs, les férmula general sera:

r

r

continuacio.

(n+l)n(n—1)(n—2)...(n—(r —l))

(r+1)!

(n+)n(n-1)(n-2)..(n—-r+1)

(r+1)!

Aquesta expressidé ens permet calcular el nombre de r-cares que tindra un simplex de n
dimensions. Tanmateix, la série del numerador no es pot computar informaticament, motiu
pel qual intentarem expressar-la de manera diferent. Mostrem aquesta modificacié a

Com ja hem dit, al numerador apareixen una successié de nombres multiplicats. EI més
gran d’ells val (n+1) i a partir d’ell van descendint d’'unitat en unitat. Si intentem substituir
aquesta série per I'expressié factorial (n+1)! observarem com apareixen un conjunt de
nombres multiplicats que no ens interessen i que sén (n-r)!. Per no modificar la férmula
original caldra, doncs, que introduim aquesta expressié al denominador dividint. Fetes
aquestes modificacions, la férmula que ens quedara sera:

A-4.1.2. COMPUTACIO DE RESULTATS

r

(n+1)!

p G, s o

(n—r)!(r+1)!

Amb la férmula trobada en I'apartat A-4.1.1. podem calcular amb certa facilitat el nombre de
r-cares que té un simplex de n dimensions. La tasca esdevé rapida i facil d’efectuar si ens
ajudem d’un full de calcul amb el formulari adequat com el que es mostra a continuacio.

é >A-4.1. Taula de les r-cares d’un n-simplex

dimensio del n-simplex ombre de cares de r dimensions
r=0 | =1 | r=2 | =3 | r<4 | r=5 | r=6 | r=7 | r=8 | =9 | r=10
0 1 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0
2 3 3 1 0 0 0 0 0 0 0 0
3 4 6 4 1 0 0 0 0 0 0 0
4 ) 10 10 5 1 0 0 0 0 0 0
5 6 15 20 15 6 1 0 0 0 0 0
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6 7 21 35 35 21 7 1 0 0 0 0
7 8 28 56 70 56 28 1 0 0 0
8 9 36 84| 126] 126 84 36 9 1 0 0
9 10 45| 120 210} 252| 210; 120 45 10 1 0
10 11 55| 165] 330] 462 462 330 165 55 11 1

A I'esquerra de la taula hi ha el nombre de dimensions que té el n-simplex estudiat i a les
columnes de la seva dreta trobem el nombre de cares de cada dimensié que aquest té.
Com és logic, en un simplex de n dimensions només pot estar format per r-cares, lar de les
quals sigui igual o menor a n.

A-4.1.3. RELACIO AMB L’EXPANSIO D’UN BINOMI

A Tl'apartat de I'hipercub haviem vist com el calcul del nombre de r-cares d’un n-cub es
podia relacionar amb I'expansié d’un determinat binomi. En el cas del n-simplex passara
quelcom semblant. Per a trobar aquesta relacié cal fer referéncia a una de les formules de
combinatoria. En concret, el nombre de combinacions que es poden fer amb “a” elements
agafats en grups de “b” elements es calcula de la manera seguient:

3 al

(=
" bl (a-b)!

Si recuperem la formula deduida al primer subapartat i la comparem amb la de les
combinacions observarem certa similitud entre elles.

(n+1)!

Si volem calcular el nombre de r-cares d’un n-simplex mitjancant combinatoria haurem de
fer alguns canvis. En primer lloc sembla ser que “a” s’haura de substituir per (n+1) i “b” ho
haura de fer per (n-r). Tenint en compte aixd, si calculem (a-b) veurem com val (r+1), tal
com surt a la formula que hem desenvolupat. Aixi doncs, sembla ser que es compleix el

seguent:

X =

X = (n+lﬁ - c
T (n=r)Y(ra1)r )0

Posem un exemple. Procedim a calcular quantes cares de cada dimensié tindra un 4-
simplex mitjangant combinatoria:

!
C = 5!

=0 (net) = (4-0)Clant) = G5y = 4,(5—_4), =2

(n-r)
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5!
r=1 (1) Clnety = -Gty = 9 Cs) = 31(5-3)! =10
. 5!
=2 (1= sty = (4-2) Gy = 9 Cs) = 21(5-2)! =10
5!
r=3 (n-—r)C(n+|) = (4-3)C(4+1) - (1)C(5) - 1!(5 _1)! =5
) 5!
r=4 (1-r) Clnst) = (a-4)Cla) = 0 Cs) = 01 (5-0)! =1

Fixem-nos que per calcular totes les r-cares del 4-simplex hem fet la série de calculs
seguent:

C, = ) (8]
: BINY
<) HINGINE
(3 o 0 G 0

A la dreta de les combinacions hi hem situat els nombres combinatoris corresponents. Si
ens hi fixem veurem com aquests sén els que trobem a la sisena linia del triangle de Pascal
(emprada per calcular binomis elevats a exponent 5) a excepcié del sCs. Tenint en compte
que hem volgut calcular les r-cares d’'un 4 simplex i que hem desembocat a la linia del
triangle de Pascal que correspon a binomis elevats a 5 proposem el binomi seguent:

(1 +1)n+l

Si calculem I'expansié d’aquest binomi per a qualsevol valor enter i positiu de “n” obtindrem
el nombre de r-cares de les que esta format aquell n-simplex. Procedim a verificar-ho amb
alguns exemples:

2-simplex  (1+1)"" = (1+1)" =143+3+1
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3-simplex
4-simplex
5-simplex

6-simplex

(1+1)" =(1+1) =1+4+6+4+1
(1+1)" =(1+1) =1+5+10+10+5+1
(141" =(1+1)" =1+6+15+20+15+6+1

(141" =(1+1) =147+21+35+35+21+7+1

Efectivament els resultats coincideixen amb els de la taula anterior. Tanmateix observem
com sempre apareix un primer valor 1 que cal descartar. Si menyspreem aquest, obtindrem
el nombre de vértexs (Xo), el nombre d’arestes (X,), el nombre de cares triangulars (X,) i
aixi successivament fins arribar al nombre de n-cares (X,).Per tant:

Expandint el binomi (1+1)

n+1

, sent n un nombre enter i positiu, obtindrem el nombre de

cares des de O fins a n dimensions que té un simplex de n dimensions. Caldra, pero,
desestimar el primer valor que obtinguem i que sempre sera 1.
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A-5.1. Fabricacié de models d’hipercub

L’estudi de la quarta dimensié i de les figures quadridimensionals basiques que hem dut a
terme en aquest treball s’ha completat amb la fabricacié de 3 models d’hipercub que ara
presentem en aquest annex.

En concret s’ha fabricat un model de la projeccié central de I'hipercub i dos models de
I’'hipercub desplegat. Procedim a descriure’ls un per un:

A-5.1.1. MODEL DE PROJECCIO CENTRAL DE L’HIPERCUB

Aquest model ha estat fabricat amb polimetacrilat transparent. Esta constituit per 12 peces
de forma trapezial i 6 peces quadrades. El tallat d’'aquestes s’ha dut a terme amb una serra
de calar amb fulla per a plastic dur. Les diferents parts han estat unides amb cola per a
plastics rigids.

Pel que fa al procés de muntatge, en primer lloc es va procedir a construir el cub central
petit. Seguidament es van unir 4 peces trapezials per formar un tronc de con de base
quadrada. A continuacié es va adherir aquest a
una de les 6 cares del cub. Es va repetir el
procés i el segon tronc de con s’adheri a la cara
oposada del cub. Mitjancant les 4 peces
trapezials restants es va completar el model. Per
ultim es procedi a fer un polit a les peces de
metacrilat per aconseguir un acabat transitcid.

A-5.1.2. MODEL DE L’HIPERCUB DESPLEGAT

El present model d’hipercub desplegat ha estat fabricat amb cartré6 de 3 mm de gruix. Per a
la uni6é de les peces s’ha emprat cola d'impacte. Com a eina de tall s’ha utilitzar un cuter i
unes tisores.

Per a construir aquest model primer es van haver de fabricar 8

cubs identics. Per aquesta finalitat es van tallar 8 peces de cartr6

com la que es mostra a la figura de la dreta i es van unir les

corresponents solapes. Seguidament, fent Us de la cola

d'impacte, es varen adherir 4 dels cubs fabricats un sobre l'altre.

A continuacié, al segon cub d’aquesta torre es van enganxar, a

cada una de les seves 4 cares restants, un cub. D’aquesta

manera es completava el procés de fabricacié de 'estructura del

model. Per a fer-lo més estétic, se li aplica una capa de pintura segelladora blanca i
seguidament es repeti el procés amb pintura vermella. Per ultim, es col-locaren unes
etiquetes numerades a les cares, les quals indiquen com s’hauria de muntar el cub a la

126



FsEud o2 e OusarBSs dimeErisica

FreEx = Faoricscico o2 Moroes =S

quarta dimensi6. Aquelles cares amb el mateix nombre haurien d'unir-se per muntar
I'hipercub.

A-5.1.3. SEGON MODEL DE L’HIPERCUB DESPLEGAT

El segon model d’hipercub desplegat que hem fabricat té la caracteristica de poder ser
plegat de manera que es pot guardar dins una carpeta, per exemple. Per a la fabricacio
d’aquest hem emprat cartolina, tisores, cinta adhesiva i cola

de barra.
Per fabricar aquest model cal comencgar tallant 7 peces de

cartolina com les que es mostren a la figura de la dreta. Un
cop tenim les peces cal doblegar-les per les linies continues i unir, utilitzant la cola, la
solapa dibuixada amb linia intermitent amb l'altre extrem de la pega. Realitzant aquesta
operacié amb totes elles obtindrem 7 “cubs” sense dues de les seves cares. Fet aixo cal
procedir a unir les diferents parts. El procés que cal seguir per muntar I'hipercub és forca
complex i per tant l'il-lustrarem fent servir fotografies:
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A-6.1. Calcul de ’angle diédric format entre dues cares d’un tetraedre

x/2

=X

Establertes les variables tal com s’indica a la figura de la dreta podem aplicar el teorema de
Pitagores per obtenir la longitud del costat w de la manera seguent:

xY 2_ 2 2 2 X ,  4xP-x’ 3x° 3
Zl4wt=x; w=x'-=— w= : w=1’—; w="2
2 4 4 4 2

Ara que ja sabem la longitud del costat w, podem plantejar el teorema de Pitagores
novament per aconseguir el valor de I'angle ¢:

S

()57 (35 (5%

(5\:2 % = arcsin(%] ; @ =2arcsin [%)

¢ =70,528779°=70°31'43,61"

X/2

Aixi doncs, I'angle diédric que formen dues cares d'un tetraedre val aproximadament 70°
31 43,61”.
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A-6.2. Calcul de I'angle diédric format entre dues cares d’un octaedre

x/2

Per calcular I'angle diédric ¢ format entre dues cares triangulars de l'octaedre cal que
primer calculem el valor de wi h.

Tenint en compte que I'octaedre té costat x, primer comengarem deduint quina longitud
tindra el segment w. Aplicant el teorema de Pitagores aconseguirem:

9 X ’ 2 2 xz 2 2 2 xz &) o) xz 3x2 X\/g
WH—| =X, W+—=x", W=x"—, W=x— W=\/— N R
2 4 4 4 4 2

Disposem-nos ara a calcular la longitud del segment h. Aplicarem el teorema de Pitagores i
obtindrem:

X 4 +xt=h; h=+2x" ; h=x\/5

Ara que ja tenim les longituds dels segments h i w intentem descobrir el valor de 'angle ¢
mitjancant trigonometria:

)
’ : cosﬂ=\/g; ,b’=arccos(\/g]

)

Q= 180—2arccos(\/—§jj ;v 9=109,471221°=109°28'16"

cosff =

(xV3)/2

Per tant, I'angle diédric format entre dues cares triangulars de I'octaedre val 109° 28’ 16"’
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